基于GMM的MIMO-AR混合盲源分离

T. Routtenberg, J. Tabrikian
{"title":"基于GMM的MIMO-AR混合盲源分离","authors":"T. Routtenberg, J. Tabrikian","doi":"10.1109/EEEI.2006.321090","DOIUrl":null,"url":null,"abstract":"The problem of blind source separation (BSS) of multiple-input multiple-output (MIMO) autoregressive (AR) mixture is addressed in this paper. A new time-domain method for system identification and BSS for MIMO-AR models in proposed based on the Gaussian mixture model (GMM) for sources distribution. The algorithm is based on generalized expectation-maximization (GEM) for joint estimation of the AR model parameters and the GMM parameters of the sources. The method is tested via simulations of synthetic and audio signals mixed by a MIMO-AR model. The results show that the proposed algorithm outperforms the well-known multidimensional linear predictive coding (LPC), and it enables to achieve higher signal-to-interference ratio (SIR) in the BSS problem.","PeriodicalId":142814,"journal":{"name":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blind Source Separation for MIMO-AR Mixtures Using GMM\",\"authors\":\"T. Routtenberg, J. Tabrikian\",\"doi\":\"10.1109/EEEI.2006.321090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of blind source separation (BSS) of multiple-input multiple-output (MIMO) autoregressive (AR) mixture is addressed in this paper. A new time-domain method for system identification and BSS for MIMO-AR models in proposed based on the Gaussian mixture model (GMM) for sources distribution. The algorithm is based on generalized expectation-maximization (GEM) for joint estimation of the AR model parameters and the GMM parameters of the sources. The method is tested via simulations of synthetic and audio signals mixed by a MIMO-AR model. The results show that the proposed algorithm outperforms the well-known multidimensional linear predictive coding (LPC), and it enables to achieve higher signal-to-interference ratio (SIR) in the BSS problem.\",\"PeriodicalId\":142814,\"journal\":{\"name\":\"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEI.2006.321090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2006.321090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了多输入多输出(MIMO)自回归(AR)混合信号的盲源分离问题。基于源分布的高斯混合模型(GMM),提出了一种新的MIMO-AR系统识别和BSS的时域方法。该算法基于广义期望最大化(GEM)对AR模型参数和源的GMM参数进行联合估计。通过MIMO-AR模型混合的合成信号和音频信号的仿真验证了该方法的有效性。结果表明,该算法优于众所周知的多维线性预测编码(LPC),能够在BSS问题中实现更高的信干扰比(SIR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Source Separation for MIMO-AR Mixtures Using GMM
The problem of blind source separation (BSS) of multiple-input multiple-output (MIMO) autoregressive (AR) mixture is addressed in this paper. A new time-domain method for system identification and BSS for MIMO-AR models in proposed based on the Gaussian mixture model (GMM) for sources distribution. The algorithm is based on generalized expectation-maximization (GEM) for joint estimation of the AR model parameters and the GMM parameters of the sources. The method is tested via simulations of synthetic and audio signals mixed by a MIMO-AR model. The results show that the proposed algorithm outperforms the well-known multidimensional linear predictive coding (LPC), and it enables to achieve higher signal-to-interference ratio (SIR) in the BSS problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信