{"title":"在贝叶斯网络的背景下通路分析-主和分析基因的数学建模","authors":"Chen Zhao, I. Ivanov, M. Bittner, E. Dougherty","doi":"10.1109/GENSiPS.2011.6169444","DOIUrl":null,"url":null,"abstract":"We utilize a tree-structured Bayesian network to characterize and detect master and canalizing genes via the coefficient of determination (CoD). Master genes possess strong regulation over groups of genes, whereas canalizing genes take over the regulation of large cohorts under certain cell conditions. While related, the two concepts are not the same and the analytic measures we employ reveal that difference. We also consider hypothesis testing for successful drug intervention in the framework of the Bayesian model.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathway analysis in the context of Bayesian networks - mathematical modeling of master and canalizing genes\",\"authors\":\"Chen Zhao, I. Ivanov, M. Bittner, E. Dougherty\",\"doi\":\"10.1109/GENSiPS.2011.6169444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We utilize a tree-structured Bayesian network to characterize and detect master and canalizing genes via the coefficient of determination (CoD). Master genes possess strong regulation over groups of genes, whereas canalizing genes take over the regulation of large cohorts under certain cell conditions. While related, the two concepts are not the same and the analytic measures we employ reveal that difference. We also consider hypothesis testing for successful drug intervention in the framework of the Bayesian model.\",\"PeriodicalId\":181666,\"journal\":{\"name\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSiPS.2011.6169444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pathway analysis in the context of Bayesian networks - mathematical modeling of master and canalizing genes
We utilize a tree-structured Bayesian network to characterize and detect master and canalizing genes via the coefficient of determination (CoD). Master genes possess strong regulation over groups of genes, whereas canalizing genes take over the regulation of large cohorts under certain cell conditions. While related, the two concepts are not the same and the analytic measures we employ reveal that difference. We also consider hypothesis testing for successful drug intervention in the framework of the Bayesian model.