基于最长公共子序列的矢量场集合的比较可视化

Richen Liu, Hanqi Guo, Jiang Zhang, Xiaoru Yuan
{"title":"基于最长公共子序列的矢量场集合的比较可视化","authors":"Richen Liu, Hanqi Guo, Jiang Zhang, Xiaoru Yuan","doi":"10.1109/PACIFICVIS.2016.7465256","DOIUrl":null,"url":null,"abstract":"We propose a longest common subsequence (LCSS)-based approach to compute the distance among vector field ensembles. By measuring how many common blocks the ensemble pathlines pass through, the LCSS distance defines the similarity among vector field ensembles by counting the number of shared domain data blocks. Compared with traditional methods (e.g., pointwise Euclidean distance or dynamic time warping distance), the proposed approach is robust to outliers, missing data, and the sampling rate of the pathline timesteps. Taking advantage of smaller and reusable intermediate output, visualization based on the proposed LCSS approach reveals temporal trends in the data at low storage cost and avoids tracing pathlines repeatedly. We evaluate our method on both synthetic data and simulation data, demonstrating the robustness of the proposed approach.","PeriodicalId":129600,"journal":{"name":"2016 IEEE Pacific Visualization Symposium (PacificVis)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Comparative visualization of vector field ensembles based on longest common subsequence\",\"authors\":\"Richen Liu, Hanqi Guo, Jiang Zhang, Xiaoru Yuan\",\"doi\":\"10.1109/PACIFICVIS.2016.7465256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a longest common subsequence (LCSS)-based approach to compute the distance among vector field ensembles. By measuring how many common blocks the ensemble pathlines pass through, the LCSS distance defines the similarity among vector field ensembles by counting the number of shared domain data blocks. Compared with traditional methods (e.g., pointwise Euclidean distance or dynamic time warping distance), the proposed approach is robust to outliers, missing data, and the sampling rate of the pathline timesteps. Taking advantage of smaller and reusable intermediate output, visualization based on the proposed LCSS approach reveals temporal trends in the data at low storage cost and avoids tracing pathlines repeatedly. We evaluate our method on both synthetic data and simulation data, demonstrating the robustness of the proposed approach.\",\"PeriodicalId\":129600,\"journal\":{\"name\":\"2016 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2016.7465256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2016.7465256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们提出了一种基于最长公共子序列(LCSS)的方法来计算向量场集合之间的距离。LCSS距离通过测量集成路径经过的公共块的数量,通过计算共享域数据块的数量来定义向量场集成之间的相似性。与传统方法(如点向欧几里得距离或动态时间翘曲距离)相比,该方法对异常值、缺失数据和路径时间步长的采样率具有鲁棒性。利用更小和可重用的中间输出,基于LCSS方法的可视化以低存储成本揭示数据中的时间趋势,避免重复跟踪路径。我们在合成数据和仿真数据上对我们的方法进行了评估,证明了所提出方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative visualization of vector field ensembles based on longest common subsequence
We propose a longest common subsequence (LCSS)-based approach to compute the distance among vector field ensembles. By measuring how many common blocks the ensemble pathlines pass through, the LCSS distance defines the similarity among vector field ensembles by counting the number of shared domain data blocks. Compared with traditional methods (e.g., pointwise Euclidean distance or dynamic time warping distance), the proposed approach is robust to outliers, missing data, and the sampling rate of the pathline timesteps. Taking advantage of smaller and reusable intermediate output, visualization based on the proposed LCSS approach reveals temporal trends in the data at low storage cost and avoids tracing pathlines repeatedly. We evaluate our method on both synthetic data and simulation data, demonstrating the robustness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信