Dong Zhou, Bin Fan, Hyeontaek Lim, D. Andersen, M. Kaminsky, M. Mitzenmacher, Ren Wang, A. Singh
{"title":"使用ScaleBricks扩展集群网络设备","authors":"Dong Zhou, Bin Fan, Hyeontaek Lim, D. Andersen, M. Kaminsky, M. Mitzenmacher, Ren Wang, A. Singh","doi":"10.1145/2785956.2787503","DOIUrl":null,"url":null,"abstract":"This paper presents ScaleBricks, a new design for building scalable, clustered network appliances that must \"pin\" flow state to a specific handling node without being able to choose which node that should be. ScaleBricks applies a new, compact lookup structure to route packets directly to the appropriate handling node, without incurring the cost of multiple hops across the internal interconnect. Its lookup structure is many times smaller than the alternative approach of fully replicating a forwarding table onto all nodes. As a result, ScaleBricks is able to improve throughput and latency while simultaneously increasing the total number of flows that can be handled by such a cluster. This architecture is effective in practice: Used to optimize packet forwarding in an existing commercial LTE-to-Internet gateway, it increases the throughput of a four-node cluster by 23%, reduces latency by up to 10%, saves memory, and stores up to 5.7x more entries in the forwarding table.","PeriodicalId":268472,"journal":{"name":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Scaling Up Clustered Network Appliances with ScaleBricks\",\"authors\":\"Dong Zhou, Bin Fan, Hyeontaek Lim, D. Andersen, M. Kaminsky, M. Mitzenmacher, Ren Wang, A. Singh\",\"doi\":\"10.1145/2785956.2787503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents ScaleBricks, a new design for building scalable, clustered network appliances that must \\\"pin\\\" flow state to a specific handling node without being able to choose which node that should be. ScaleBricks applies a new, compact lookup structure to route packets directly to the appropriate handling node, without incurring the cost of multiple hops across the internal interconnect. Its lookup structure is many times smaller than the alternative approach of fully replicating a forwarding table onto all nodes. As a result, ScaleBricks is able to improve throughput and latency while simultaneously increasing the total number of flows that can be handled by such a cluster. This architecture is effective in practice: Used to optimize packet forwarding in an existing commercial LTE-to-Internet gateway, it increases the throughput of a four-node cluster by 23%, reduces latency by up to 10%, saves memory, and stores up to 5.7x more entries in the forwarding table.\",\"PeriodicalId\":268472,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2785956.2787503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785956.2787503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scaling Up Clustered Network Appliances with ScaleBricks
This paper presents ScaleBricks, a new design for building scalable, clustered network appliances that must "pin" flow state to a specific handling node without being able to choose which node that should be. ScaleBricks applies a new, compact lookup structure to route packets directly to the appropriate handling node, without incurring the cost of multiple hops across the internal interconnect. Its lookup structure is many times smaller than the alternative approach of fully replicating a forwarding table onto all nodes. As a result, ScaleBricks is able to improve throughput and latency while simultaneously increasing the total number of flows that can be handled by such a cluster. This architecture is effective in practice: Used to optimize packet forwarding in an existing commercial LTE-to-Internet gateway, it increases the throughput of a four-node cluster by 23%, reduces latency by up to 10%, saves memory, and stores up to 5.7x more entries in the forwarding table.