使用图形切割对H.264压缩视频进行对象分割

Yu Lu, Zhaoyang Zhang, Zhi Liu, Xuli Shi
{"title":"使用图形切割对H.264压缩视频进行对象分割","authors":"Yu Lu, Zhaoyang Zhang, Zhi Liu, Xuli Shi","doi":"10.1109/ICCT.2008.4716180","DOIUrl":null,"url":null,"abstract":"This paper proposed a novel approach to segment objects from the H.264 compressed video with moving background. At first, the noisy motion vectors are eliminated from the motion field by vector median filtering. Then the predicted motion field reconstructed by backward estimation is used to accumulate the motion field, which is followed by global motion compensation. After that, the hypothesis testing is used for initial region classification. Finally, the graph cuts technique is applied to partition objects by minimizing the energy function formulated by the model of Markov Random Field. The experimental results demonstrate efficient performance and good segmentation quality of the proposed method.","PeriodicalId":259577,"journal":{"name":"2008 11th IEEE International Conference on Communication Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object segmentation using Graph Cuts for the H.264 compressed video with moving background\",\"authors\":\"Yu Lu, Zhaoyang Zhang, Zhi Liu, Xuli Shi\",\"doi\":\"10.1109/ICCT.2008.4716180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a novel approach to segment objects from the H.264 compressed video with moving background. At first, the noisy motion vectors are eliminated from the motion field by vector median filtering. Then the predicted motion field reconstructed by backward estimation is used to accumulate the motion field, which is followed by global motion compensation. After that, the hypothesis testing is used for initial region classification. Finally, the graph cuts technique is applied to partition objects by minimizing the energy function formulated by the model of Markov Random Field. The experimental results demonstrate efficient performance and good segmentation quality of the proposed method.\",\"PeriodicalId\":259577,\"journal\":{\"name\":\"2008 11th IEEE International Conference on Communication Technology\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 11th IEEE International Conference on Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2008.4716180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th IEEE International Conference on Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2008.4716180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种从H.264压缩视频中分割运动背景的新方法。首先,通过矢量中值滤波去除运动场中的运动矢量噪声。然后利用后向估计重建的预测运动场进行运动场累积,然后进行全局运动补偿。然后,使用假设检验进行初始区域分类。最后,将图切割技术应用于通过最小化由马尔可夫随机场模型表示的能量函数来划分目标。实验结果表明,该方法具有良好的分割性能和分割质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object segmentation using Graph Cuts for the H.264 compressed video with moving background
This paper proposed a novel approach to segment objects from the H.264 compressed video with moving background. At first, the noisy motion vectors are eliminated from the motion field by vector median filtering. Then the predicted motion field reconstructed by backward estimation is used to accumulate the motion field, which is followed by global motion compensation. After that, the hypothesis testing is used for initial region classification. Finally, the graph cuts technique is applied to partition objects by minimizing the energy function formulated by the model of Markov Random Field. The experimental results demonstrate efficient performance and good segmentation quality of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信