{"title":"非均匀偏好的策略多类分类及其与激励相容性的关系","authors":"Manish K. Singh, Ankur A. Kulkarni","doi":"10.1109/ICC56513.2022.10093630","DOIUrl":null,"url":null,"abstract":"Motivated by the problem of university admissions, we study the problem of correctly classifying the label of a feature vector when a sender can manipulate this vector to get a desired label. There are two players: sender and receiver and both know the target function over the feature vectors. The sender privately observes a feature vector and manipulates it according to its payoff criteria and sends it to the receiver. The receiver would like to perform multi-class classification to maximize the number of points for which it can recover the original label of the feature vector known to the sender. We pose this problem as a Stackelberg game with the receiver as the leader. Through this we characterise the optimal classifier in terms of the independence number of a certain graph which depends on the utility and cost of the sender and the target function. As a corollary, we characterise the optimal strategy of the receiver for the problem of strategic communication with cost. Finally we show that if the target function is incentive compatible condition, then the receiver can correctly classify all feature vectors.","PeriodicalId":101654,"journal":{"name":"2022 Eighth Indian Control Conference (ICC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic Multi-class Classification for Non-uniform Preferences and its Relation to Incentive Compatibility\",\"authors\":\"Manish K. Singh, Ankur A. Kulkarni\",\"doi\":\"10.1109/ICC56513.2022.10093630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the problem of university admissions, we study the problem of correctly classifying the label of a feature vector when a sender can manipulate this vector to get a desired label. There are two players: sender and receiver and both know the target function over the feature vectors. The sender privately observes a feature vector and manipulates it according to its payoff criteria and sends it to the receiver. The receiver would like to perform multi-class classification to maximize the number of points for which it can recover the original label of the feature vector known to the sender. We pose this problem as a Stackelberg game with the receiver as the leader. Through this we characterise the optimal classifier in terms of the independence number of a certain graph which depends on the utility and cost of the sender and the target function. As a corollary, we characterise the optimal strategy of the receiver for the problem of strategic communication with cost. Finally we show that if the target function is incentive compatible condition, then the receiver can correctly classify all feature vectors.\",\"PeriodicalId\":101654,\"journal\":{\"name\":\"2022 Eighth Indian Control Conference (ICC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Eighth Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC56513.2022.10093630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eighth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC56513.2022.10093630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strategic Multi-class Classification for Non-uniform Preferences and its Relation to Incentive Compatibility
Motivated by the problem of university admissions, we study the problem of correctly classifying the label of a feature vector when a sender can manipulate this vector to get a desired label. There are two players: sender and receiver and both know the target function over the feature vectors. The sender privately observes a feature vector and manipulates it according to its payoff criteria and sends it to the receiver. The receiver would like to perform multi-class classification to maximize the number of points for which it can recover the original label of the feature vector known to the sender. We pose this problem as a Stackelberg game with the receiver as the leader. Through this we characterise the optimal classifier in terms of the independence number of a certain graph which depends on the utility and cost of the sender and the target function. As a corollary, we characterise the optimal strategy of the receiver for the problem of strategic communication with cost. Finally we show that if the target function is incentive compatible condition, then the receiver can correctly classify all feature vectors.