船载振动对船舶水下辐射噪声的估计

Esen Cintosun, L. Gilroy
{"title":"船载振动对船舶水下辐射噪声的估计","authors":"Esen Cintosun, L. Gilroy","doi":"10.5957/smc-2021-114","DOIUrl":null,"url":null,"abstract":"The acoustic signature of an Orca-class training vessel (Patrol Craft Training, PCT) Moose from the Royal Canadian Navy (RCN) was measured at the RCN’s Patricia Bay acoustic range on Vancouver Island, British Columbia, Canada. The acoustic range trials included accelerometer measurements on the ship hull and in the engine room and hydrophone measurements at approximately 100 m from the ship. The trials were carried out at the ship speed range of 3 to 20 knots. The test data from all the trial runs was used to derive, evaluate and validate the method of estimating ship underwater radiated noise from onboard vibrations. In the investigation, the runs were split into two sets: a training set and a testing set. A least squares approximation, AQV (average quadratic velocity) SL (source level) correlation, was then applied to the training set data to formulate a transfer function to estimate the underwater radiated noise from onboard vibrations. The AQV is calculated from accelerometer measurements (vibration levels) and SL is obtained from the hydrophone measurements. The third octave frequency band (from 10 Hz to 10 kHz) SL estimations of the testing set runs (using the transfer function and AQV) are within 1 to 3 dB of SL from the hydrophone measurements. This study demonstrates a capability of monitoring underwater radiated noise from ships using only onboard vibration levels which may be of interest for future projects relating to the reduction of shipping noise against a threshold in acoustically sensitive environments.","PeriodicalId":243899,"journal":{"name":"Day 3 Fri, October 29, 2021","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Ship Underwater Radiated Noise from Onboard Vibrations\",\"authors\":\"Esen Cintosun, L. Gilroy\",\"doi\":\"10.5957/smc-2021-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acoustic signature of an Orca-class training vessel (Patrol Craft Training, PCT) Moose from the Royal Canadian Navy (RCN) was measured at the RCN’s Patricia Bay acoustic range on Vancouver Island, British Columbia, Canada. The acoustic range trials included accelerometer measurements on the ship hull and in the engine room and hydrophone measurements at approximately 100 m from the ship. The trials were carried out at the ship speed range of 3 to 20 knots. The test data from all the trial runs was used to derive, evaluate and validate the method of estimating ship underwater radiated noise from onboard vibrations. In the investigation, the runs were split into two sets: a training set and a testing set. A least squares approximation, AQV (average quadratic velocity) SL (source level) correlation, was then applied to the training set data to formulate a transfer function to estimate the underwater radiated noise from onboard vibrations. The AQV is calculated from accelerometer measurements (vibration levels) and SL is obtained from the hydrophone measurements. The third octave frequency band (from 10 Hz to 10 kHz) SL estimations of the testing set runs (using the transfer function and AQV) are within 1 to 3 dB of SL from the hydrophone measurements. This study demonstrates a capability of monitoring underwater radiated noise from ships using only onboard vibration levels which may be of interest for future projects relating to the reduction of shipping noise against a threshold in acoustically sensitive environments.\",\"PeriodicalId\":243899,\"journal\":{\"name\":\"Day 3 Fri, October 29, 2021\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Fri, October 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5957/smc-2021-114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Fri, October 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/smc-2021-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在加拿大不列颠哥伦比亚省温哥华岛的帕特里夏湾声学范围内,测量了加拿大皇家海军(RCN)的一艘虎鲸级训练舰(巡逻艇训练,PCT)的声学特征。声学范围试验包括船体和机舱的加速度计测量以及距离船舶约100米的水听器测量。试验在3到20节的航速范围内进行。所有试验数据都被用于推导、评估和验证由船载振动估计舰船水下辐射噪声的方法。在调查中,跑步被分成两组:训练集和测试集。然后,将最小二乘近似AQV(平均二次速度)SL(源级)相关性应用于训练集数据,以形成传递函数来估计船上振动的水下辐射噪声。AQV由加速度计测量(振动级)计算,SL由水听器测量获得。测试集运行(使用传递函数和AQV)的第三个倍频频带(从10 Hz到10 kHz)的声呐估计与水听器测量的声呐相差在1到3 dB之间。这项研究证明了仅使用船上振动水平监测船舶水下辐射噪声的能力,这可能对未来有关在声学敏感环境中降低船舶噪声阈值的项目感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Ship Underwater Radiated Noise from Onboard Vibrations
The acoustic signature of an Orca-class training vessel (Patrol Craft Training, PCT) Moose from the Royal Canadian Navy (RCN) was measured at the RCN’s Patricia Bay acoustic range on Vancouver Island, British Columbia, Canada. The acoustic range trials included accelerometer measurements on the ship hull and in the engine room and hydrophone measurements at approximately 100 m from the ship. The trials were carried out at the ship speed range of 3 to 20 knots. The test data from all the trial runs was used to derive, evaluate and validate the method of estimating ship underwater radiated noise from onboard vibrations. In the investigation, the runs were split into two sets: a training set and a testing set. A least squares approximation, AQV (average quadratic velocity) SL (source level) correlation, was then applied to the training set data to formulate a transfer function to estimate the underwater radiated noise from onboard vibrations. The AQV is calculated from accelerometer measurements (vibration levels) and SL is obtained from the hydrophone measurements. The third octave frequency band (from 10 Hz to 10 kHz) SL estimations of the testing set runs (using the transfer function and AQV) are within 1 to 3 dB of SL from the hydrophone measurements. This study demonstrates a capability of monitoring underwater radiated noise from ships using only onboard vibration levels which may be of interest for future projects relating to the reduction of shipping noise against a threshold in acoustically sensitive environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信