基于深度神经网络的船体残余梁强度预测

Alessandro La Ferlita, Emanuel Di Nardo, Massimo Macera, Thomas Lindemann, A. Ciaramella, Nikolaos Koulianos
{"title":"基于深度神经网络的船体残余梁强度预测","authors":"Alessandro La Ferlita, Emanuel Di Nardo, Massimo Macera, Thomas Lindemann, A. Ciaramella, Nikolaos Koulianos","doi":"10.5957/smc-2022-074","DOIUrl":null,"url":null,"abstract":"The main purpose of this study is to apply a Deep Neural Network (DNN) method to linear systems and to predict in a relatively short time span the ultimate vertical bending moment (VBM) for damaged ships. A Deep Neural Network approach, which is composed of multiple fully connected layers with a Rectified Linear Unit (ReLU) which is a non-linear activation function, has been applied to more than 6000 samples and validated using leave-one-out technique. The ultimate strength has been predicted for a set of completely new damage scenarios of different cross sections, enhancing that the deep neural network method can estimate the residual hull girder strength for a correlated damage index general (DIG). The predicted residual hull girder strength as well as the shift of the neutral axis are validated against Smith’s method-based results.","PeriodicalId":404590,"journal":{"name":"Day 3 Thu, September 29, 2022","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Neural Network to Predict the Residual Hull Girder Strength\",\"authors\":\"Alessandro La Ferlita, Emanuel Di Nardo, Massimo Macera, Thomas Lindemann, A. Ciaramella, Nikolaos Koulianos\",\"doi\":\"10.5957/smc-2022-074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this study is to apply a Deep Neural Network (DNN) method to linear systems and to predict in a relatively short time span the ultimate vertical bending moment (VBM) for damaged ships. A Deep Neural Network approach, which is composed of multiple fully connected layers with a Rectified Linear Unit (ReLU) which is a non-linear activation function, has been applied to more than 6000 samples and validated using leave-one-out technique. The ultimate strength has been predicted for a set of completely new damage scenarios of different cross sections, enhancing that the deep neural network method can estimate the residual hull girder strength for a correlated damage index general (DIG). The predicted residual hull girder strength as well as the shift of the neutral axis are validated against Smith’s method-based results.\",\"PeriodicalId\":404590,\"journal\":{\"name\":\"Day 3 Thu, September 29, 2022\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 29, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5957/smc-2022-074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 29, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/smc-2022-074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是将深度神经网络(DNN)方法应用于线性系统,并在相对短的时间跨度内预测受损船舶的极限垂直弯矩(VBM)。一种由多个完全连接层和一个非线性激活函数整流线性单元(ReLU)组成的深度神经网络方法已经应用于6000多个样本,并使用留一技术进行了验证。对一组全新的不同截面损伤情景进行了极限强度预测,增强了深度神经网络方法在相关损伤指标(DIG)下估计船体残余梁强度的能力。预测的剩余船体梁强度以及中性轴的位移与Smith的方法为基础的结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Neural Network to Predict the Residual Hull Girder Strength
The main purpose of this study is to apply a Deep Neural Network (DNN) method to linear systems and to predict in a relatively short time span the ultimate vertical bending moment (VBM) for damaged ships. A Deep Neural Network approach, which is composed of multiple fully connected layers with a Rectified Linear Unit (ReLU) which is a non-linear activation function, has been applied to more than 6000 samples and validated using leave-one-out technique. The ultimate strength has been predicted for a set of completely new damage scenarios of different cross sections, enhancing that the deep neural network method can estimate the residual hull girder strength for a correlated damage index general (DIG). The predicted residual hull girder strength as well as the shift of the neutral axis are validated against Smith’s method-based results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信