树度量的自稳定算法

A. Datta, T. Gonzalez, V. Thiagarajan
{"title":"树度量的自稳定算法","authors":"A. Datta, T. Gonzalez, V. Thiagarajan","doi":"10.1109/ICAPP.1995.472220","DOIUrl":null,"url":null,"abstract":"This paper presents self-stabilizing algorithms for finding the diameter, centroid(s) and median(s) of a tree. The algorithms compute these metrics of a tree in a finite number of steps. The distributed tree structured system is maintained by another self-stabilizing spanning tree protocol over a graph. This makes the system resilient to transient failures, from which it is guaranteed to recover after a finite number of moves.<<ETX>>","PeriodicalId":448130,"journal":{"name":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-stabilizing algorithms for tree metrics\",\"authors\":\"A. Datta, T. Gonzalez, V. Thiagarajan\",\"doi\":\"10.1109/ICAPP.1995.472220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents self-stabilizing algorithms for finding the diameter, centroid(s) and median(s) of a tree. The algorithms compute these metrics of a tree in a finite number of steps. The distributed tree structured system is maintained by another self-stabilizing spanning tree protocol over a graph. This makes the system resilient to transient failures, from which it is guaranteed to recover after a finite number of moves.<<ETX>>\",\"PeriodicalId\":448130,\"journal\":{\"name\":\"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPP.1995.472220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1995.472220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种求树的直径、质心和中值的自稳定算法。算法在有限的步骤中计算树的这些度量。分布式树结构系统由另一种自稳定生成树协议在图上维护。这使得系统对瞬态故障具有弹性,保证在有限次数的移动后恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-stabilizing algorithms for tree metrics
This paper presents self-stabilizing algorithms for finding the diameter, centroid(s) and median(s) of a tree. The algorithms compute these metrics of a tree in a finite number of steps. The distributed tree structured system is maintained by another self-stabilizing spanning tree protocol over a graph. This makes the system resilient to transient failures, from which it is guaranteed to recover after a finite number of moves.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信