基于推荐模型的图像标注

Zijia Lin, Guiguang Ding, Jianmin Wang
{"title":"基于推荐模型的图像标注","authors":"Zijia Lin, Guiguang Ding, Jianmin Wang","doi":"10.1145/2009916.2010067","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach based on recommendation model is proposed for automatic image annotation. For any to-be-annotated image, we first select some related images with tags from training dataset according to their visual similarity. And then we estimate the initial ratings for tags of the training images based on tag ranking method and construct a rating matrix. We also construct a trust matrix based on visual similarity with a k-NN strategy. Then a recommendation model is built on both matrices to rank candidate tags for the target image. The proposed approach is evaluated using two benchmark image datasets, and experimental results have indicated its effectiveness.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Image annotation based on recommendation model\",\"authors\":\"Zijia Lin, Guiguang Ding, Jianmin Wang\",\"doi\":\"10.1145/2009916.2010067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel approach based on recommendation model is proposed for automatic image annotation. For any to-be-annotated image, we first select some related images with tags from training dataset according to their visual similarity. And then we estimate the initial ratings for tags of the training images based on tag ranking method and construct a rating matrix. We also construct a trust matrix based on visual similarity with a k-NN strategy. Then a recommendation model is built on both matrices to rank candidate tags for the target image. The proposed approach is evaluated using two benchmark image datasets, and experimental results have indicated its effectiveness.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2010067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于推荐模型的图像自动标注方法。对于任何待标注的图像,我们首先根据视觉相似性从训练数据集中选择一些带有标签的相关图像。然后基于标签排序法估计训练图像标签的初始评级,并构造评级矩阵。我们还使用k-NN策略构造了基于视觉相似性的信任矩阵。然后在这两个矩阵的基础上建立推荐模型,对目标图像的候选标签进行排序。利用两个基准图像数据集对该方法进行了评估,实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image annotation based on recommendation model
In this paper, a novel approach based on recommendation model is proposed for automatic image annotation. For any to-be-annotated image, we first select some related images with tags from training dataset according to their visual similarity. And then we estimate the initial ratings for tags of the training images based on tag ranking method and construct a rating matrix. We also construct a trust matrix based on visual similarity with a k-NN strategy. Then a recommendation model is built on both matrices to rank candidate tags for the target image. The proposed approach is evaluated using two benchmark image datasets, and experimental results have indicated its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信