用于阿拉伯语多方言广播媒体识别的QCRI高级转录系统(QATS): MGB-2的挑战

Sameer Khurana, Ahmed M. Ali
{"title":"用于阿拉伯语多方言广播媒体识别的QCRI高级转录系统(QATS): MGB-2的挑战","authors":"Sameer Khurana, Ahmed M. Ali","doi":"10.1109/SLT.2016.7846279","DOIUrl":null,"url":null,"abstract":"In this paper, we describe Qatar Computing Research Institute's (QCRI) speech transcription system for the 2016 Dialectal Arabic Multi-Genre Broadcast (MGB-2) challenge. MGB-2 is a controlled evaluation using 1,200 hours audio with lightly supervised transcription Our system which was a combination of three purely sequence trained recognition systems, achieved the lowest WER of 14.2% among the nine participating teams. Key features of our transcription system are: purely sequence trained acoustic models using the recently introduced Lattice free Maximum Mutual Information (LF-MMI) modeling framework; Language model rescoring using a four-gram and Recurrent Neural Network with Max- Ent connections (RNNME) language models; and system combination using Minimum Bayes Risk (MBR) decoding criterion. The whole system is built using kaldi speech recognition toolkit.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"QCRI advanced transcription system (QATS) for the Arabic Multi-Dialect Broadcast media recognition: MGB-2 challenge\",\"authors\":\"Sameer Khurana, Ahmed M. Ali\",\"doi\":\"10.1109/SLT.2016.7846279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe Qatar Computing Research Institute's (QCRI) speech transcription system for the 2016 Dialectal Arabic Multi-Genre Broadcast (MGB-2) challenge. MGB-2 is a controlled evaluation using 1,200 hours audio with lightly supervised transcription Our system which was a combination of three purely sequence trained recognition systems, achieved the lowest WER of 14.2% among the nine participating teams. Key features of our transcription system are: purely sequence trained acoustic models using the recently introduced Lattice free Maximum Mutual Information (LF-MMI) modeling framework; Language model rescoring using a four-gram and Recurrent Neural Network with Max- Ent connections (RNNME) language models; and system combination using Minimum Bayes Risk (MBR) decoding criterion. The whole system is built using kaldi speech recognition toolkit.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

在本文中,我们描述了卡塔尔计算研究所(QCRI)的语音转录系统,用于2016年阿拉伯方言多类型广播(MGB-2)挑战。MGB-2是使用1200小时音频和轻度监督转录的受控评估。我们的系统是三个纯粹序列训练识别系统的组合,在九个参与团队中实现了最低的14.2%的WER。我们的转录系统的主要特点是:使用最近引入的晶格自由最大互信息(LF-MMI)建模框架的纯序列训练声学模型;基于四元神经网络和循环神经网络(RNNME)语言模型的语言模型重建采用最小贝叶斯风险(MBR)解码准则进行系统组合。整个系统采用kaldi语音识别工具箱构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QCRI advanced transcription system (QATS) for the Arabic Multi-Dialect Broadcast media recognition: MGB-2 challenge
In this paper, we describe Qatar Computing Research Institute's (QCRI) speech transcription system for the 2016 Dialectal Arabic Multi-Genre Broadcast (MGB-2) challenge. MGB-2 is a controlled evaluation using 1,200 hours audio with lightly supervised transcription Our system which was a combination of three purely sequence trained recognition systems, achieved the lowest WER of 14.2% among the nine participating teams. Key features of our transcription system are: purely sequence trained acoustic models using the recently introduced Lattice free Maximum Mutual Information (LF-MMI) modeling framework; Language model rescoring using a four-gram and Recurrent Neural Network with Max- Ent connections (RNNME) language models; and system combination using Minimum Bayes Risk (MBR) decoding criterion. The whole system is built using kaldi speech recognition toolkit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信