字典代码压缩体系结构的性能和能量探索

M. Collin, M. Brorsson, Johnny Öberg
{"title":"字典代码压缩体系结构的性能和能量探索","authors":"M. Collin, M. Brorsson, Johnny Öberg","doi":"10.1109/IGCC.2011.6008584","DOIUrl":null,"url":null,"abstract":"We have made a performance and energy exploration of a previously proposed dictionary code compression mechanism where frequently executed individual instructions and/or sequences are replaced in memory with short code words. Our simulated design shows a dramatically reduced instruction memory access frequency leading to a performance improvement for small instruction cache sizes and to significantly reduced energy consumption in the instruction fetch path. We have evaluated the performance and energy implications of three architectural parameters: branch prediction accuracy, instruction cache size and organization. To asses the complexity of the design we have implemented the critical stages in VHDL.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A performance and energy exploration of dictionary code compression architectures\",\"authors\":\"M. Collin, M. Brorsson, Johnny Öberg\",\"doi\":\"10.1109/IGCC.2011.6008584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have made a performance and energy exploration of a previously proposed dictionary code compression mechanism where frequently executed individual instructions and/or sequences are replaced in memory with short code words. Our simulated design shows a dramatically reduced instruction memory access frequency leading to a performance improvement for small instruction cache sizes and to significantly reduced energy consumption in the instruction fetch path. We have evaluated the performance and energy implications of three architectural parameters: branch prediction accuracy, instruction cache size and organization. To asses the complexity of the design we have implemented the critical stages in VHDL.\",\"PeriodicalId\":306876,\"journal\":{\"name\":\"2011 International Green Computing Conference and Workshops\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Green Computing Conference and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2011.6008584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对先前提出的字典代码压缩机制进行了性能和能量探索,在该机制中,频繁执行的单个指令和/或序列在内存中被短码字替换。我们的模拟设计显示,大大降低了指令存储器访问频率,从而提高了小指令缓存大小的性能,并显着降低了指令获取路径中的能耗。我们已经评估了三个架构参数的性能和能源影响:分支预测精度、指令缓存大小和组织。为了评估设计的复杂性,我们在VHDL中实现了关键阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A performance and energy exploration of dictionary code compression architectures
We have made a performance and energy exploration of a previously proposed dictionary code compression mechanism where frequently executed individual instructions and/or sequences are replaced in memory with short code words. Our simulated design shows a dramatically reduced instruction memory access frequency leading to a performance improvement for small instruction cache sizes and to significantly reduced energy consumption in the instruction fetch path. We have evaluated the performance and energy implications of three architectural parameters: branch prediction accuracy, instruction cache size and organization. To asses the complexity of the design we have implemented the critical stages in VHDL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信