稀疏扳手、仿真器和减径快捷键的下限

Shang-En Huang, S. Pettie
{"title":"稀疏扳手、仿真器和减径快捷键的下限","authors":"Shang-En Huang, S. Pettie","doi":"10.4230/LIPIcs.SWAT.2018.26","DOIUrl":null,"url":null,"abstract":"We prove better lower bounds on additive spanners and emulators, which are lossy compression schemes for undirected graphs, as well as lower bounds on shortcut sets, which reduce the diameter of directed graphs. We show that any $O(n)$-size shortcut set cannot bring the diameter below $\\Omega(n^{1/6})$, and that any $O(m)$-size shortcut set cannot bring it below $\\Omega(n^{1/11})$. These improve Hesse's [Hesse03] lower bound of $\\Omega(n^{1/17})$. By combining these constructions with Abboud and Bodwin's [AbboudB17] edge-splitting technique, we get additive stretch lower bounds of $+\\Omega(n^{1/13})$ for $O(n)$-size spanners and $+\\Omega(n^{1/18})$ for $O(n)$-size emulators. These improve Abboud and Bodwin's $+\\Omega(n^{1/22})$ lower bounds.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Lower Bounds on Sparse Spanners, Emulators, and Diameter-reducing shortcuts\",\"authors\":\"Shang-En Huang, S. Pettie\",\"doi\":\"10.4230/LIPIcs.SWAT.2018.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove better lower bounds on additive spanners and emulators, which are lossy compression schemes for undirected graphs, as well as lower bounds on shortcut sets, which reduce the diameter of directed graphs. We show that any $O(n)$-size shortcut set cannot bring the diameter below $\\\\Omega(n^{1/6})$, and that any $O(m)$-size shortcut set cannot bring it below $\\\\Omega(n^{1/11})$. These improve Hesse's [Hesse03] lower bound of $\\\\Omega(n^{1/17})$. By combining these constructions with Abboud and Bodwin's [AbboudB17] edge-splitting technique, we get additive stretch lower bounds of $+\\\\Omega(n^{1/13})$ for $O(n)$-size spanners and $+\\\\Omega(n^{1/18})$ for $O(n)$-size emulators. These improve Abboud and Bodwin's $+\\\\Omega(n^{1/22})$ lower bounds.\",\"PeriodicalId\":447445,\"journal\":{\"name\":\"Scandinavian Workshop on Algorithm Theory\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Workshop on Algorithm Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SWAT.2018.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2018.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们证明了无向图的有损压缩方案——加性伸缩器和仿真器的下界,以及减小有向图直径的快捷集的下界。我们证明了任何$O(n)$大小的捷径集不能使其直径小于$\Omega(n^{1/6})$,并且任何$O(m)$大小的捷径集不能使其小于$\Omega(n^{1/11})$。这些改进了Hesse [Hesse03] $\Omega(n^{1/17})$的下界。通过将这些结构与Abboud和Bodwin的[AbboudB17]分边技术相结合,我们得到了$+\Omega(n^{1/13})$用于$O(n)$大小的旋臂和$+\Omega(n^{1/18})$用于$O(n)$大小的模拟器的加性拉伸下界。这些改进了Abboud和Bodwin的$+\Omega(n^{1/22})$下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Bounds on Sparse Spanners, Emulators, and Diameter-reducing shortcuts
We prove better lower bounds on additive spanners and emulators, which are lossy compression schemes for undirected graphs, as well as lower bounds on shortcut sets, which reduce the diameter of directed graphs. We show that any $O(n)$-size shortcut set cannot bring the diameter below $\Omega(n^{1/6})$, and that any $O(m)$-size shortcut set cannot bring it below $\Omega(n^{1/11})$. These improve Hesse's [Hesse03] lower bound of $\Omega(n^{1/17})$. By combining these constructions with Abboud and Bodwin's [AbboudB17] edge-splitting technique, we get additive stretch lower bounds of $+\Omega(n^{1/13})$ for $O(n)$-size spanners and $+\Omega(n^{1/18})$ for $O(n)$-size emulators. These improve Abboud and Bodwin's $+\Omega(n^{1/22})$ lower bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信