基于自适应惯性权的人工神经网络粒子群优化

Tae-Su Park, Ju-hong Lee, Bumghi Choi
{"title":"基于自适应惯性权的人工神经网络粒子群优化","authors":"Tae-Su Park, Ju-hong Lee, Bumghi Choi","doi":"10.1109/COGINF.2009.5250693","DOIUrl":null,"url":null,"abstract":"We present a new method to optimize weights of Artificial Neural Network (ANN) with particle swarm optimization (PSO), also we propose a new selection strategy of inertial weight, which varies according to the training error of artificial neural network, called adaptive inertial weight. By using Adaptive inertial weight, the proposed method can search global optimal solution faster and exactly. The experimental results show that the proposed method is successfully applied to benchmark examples.","PeriodicalId":420853,"journal":{"name":"2009 8th IEEE International Conference on Cognitive Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Optimization for Artificial Neural Network with Adaptive inertial weight of particle swarm optimization\",\"authors\":\"Tae-Su Park, Ju-hong Lee, Bumghi Choi\",\"doi\":\"10.1109/COGINF.2009.5250693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new method to optimize weights of Artificial Neural Network (ANN) with particle swarm optimization (PSO), also we propose a new selection strategy of inertial weight, which varies according to the training error of artificial neural network, called adaptive inertial weight. By using Adaptive inertial weight, the proposed method can search global optimal solution faster and exactly. The experimental results show that the proposed method is successfully applied to benchmark examples.\",\"PeriodicalId\":420853,\"journal\":{\"name\":\"2009 8th IEEE International Conference on Cognitive Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 8th IEEE International Conference on Cognitive Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COGINF.2009.5250693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 8th IEEE International Conference on Cognitive Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2009.5250693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

提出了一种利用粒子群算法优化人工神经网络权值的新方法,并提出了一种根据人工神经网络训练误差变化的惯性权值选择策略——自适应惯性权值。该方法采用自适应惯性权值,能够更快、更准确地搜索到全局最优解。实验结果表明,该方法成功地应用于基准算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization for Artificial Neural Network with Adaptive inertial weight of particle swarm optimization
We present a new method to optimize weights of Artificial Neural Network (ANN) with particle swarm optimization (PSO), also we propose a new selection strategy of inertial weight, which varies according to the training error of artificial neural network, called adaptive inertial weight. By using Adaptive inertial weight, the proposed method can search global optimal solution faster and exactly. The experimental results show that the proposed method is successfully applied to benchmark examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信