利用CNN动态将两个点与状态空间中不同的量化颗粒相关联

M. Coli, P. Palazzari, R. Rughi
{"title":"利用CNN动态将两个点与状态空间中不同的量化颗粒相关联","authors":"M. Coli, P. Palazzari, R. Rughi","doi":"10.1109/CNNA.1994.381637","DOIUrl":null,"url":null,"abstract":"The paper is concerned with the design of a part of the CNN state space trajectory. A point in the CNN state space represents a sampled signal (the state of each neuron is a sample): the set of points generated by the CNN state evolution can thus represent a set of sampled signals. We describe a methodology which allows us to find the initial state and the CNN weights so that the CNN state evolution is, at a fixed time t/sub 0/, as close as possible to the point representing a given sampled signal. In such way a signal is described through the CNN initial state, the cloning template and the time instant t/sub 0/. In order to find the CNN initial state and the CNN weights we used a procedure based on Genetic Algorithms.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of the CNN dynamic to associate two points with different quantization grains in the state space\",\"authors\":\"M. Coli, P. Palazzari, R. Rughi\",\"doi\":\"10.1109/CNNA.1994.381637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with the design of a part of the CNN state space trajectory. A point in the CNN state space represents a sampled signal (the state of each neuron is a sample): the set of points generated by the CNN state evolution can thus represent a set of sampled signals. We describe a methodology which allows us to find the initial state and the CNN weights so that the CNN state evolution is, at a fixed time t/sub 0/, as close as possible to the point representing a given sampled signal. In such way a signal is described through the CNN initial state, the cloning template and the time instant t/sub 0/. In order to find the CNN initial state and the CNN weights we used a procedure based on Genetic Algorithms.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了部分CNN状态空间轨迹的设计。CNN状态空间中的一个点代表一个采样信号(每个神经元的状态都是一个样本):CNN状态演化产生的点集合就可以代表一组采样信号。我们描述了一种方法,该方法允许我们找到初始状态和CNN权重,以便CNN状态演化在固定时间t/下标0/下尽可能接近表示给定采样信号的点。这样,通过CNN初始状态、克隆模板和时间瞬间t/sub 0/来描述信号。为了找到CNN的初始状态和权重,我们使用了一个基于遗传算法的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of the CNN dynamic to associate two points with different quantization grains in the state space
The paper is concerned with the design of a part of the CNN state space trajectory. A point in the CNN state space represents a sampled signal (the state of each neuron is a sample): the set of points generated by the CNN state evolution can thus represent a set of sampled signals. We describe a methodology which allows us to find the initial state and the CNN weights so that the CNN state evolution is, at a fixed time t/sub 0/, as close as possible to the point representing a given sampled signal. In such way a signal is described through the CNN initial state, the cloning template and the time instant t/sub 0/. In order to find the CNN initial state and the CNN weights we used a procedure based on Genetic Algorithms.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信