提高类不平衡检测和分类性能:组合样本和随机森林的新潜力

A. Zakaria, A. Selamat, Lim Kok Cheng, O. Krejcar
{"title":"提高类不平衡检测和分类性能:组合样本和随机森林的新潜力","authors":"A. Zakaria, A. Selamat, Lim Kok Cheng, O. Krejcar","doi":"10.1109/ICOCO56118.2022.10031922","DOIUrl":null,"url":null,"abstract":"Data mining is a knowledge discovery of the data that extracts and discovers patterns and relationships to predict outcomes. Class imbalance is one of the obstacles that can drive misclassification. The class imbalance affected the result of classification machine learning. The classification technique can divide the data into the given class target. This research focuses on four pre-processing methods: SMOTE, Spread Subsample, Class Balancer, and Resample. These methods can help to clean the data before undergoing the classification techniques. Resample shows the best result for solving the imbalance problem with 41.321 for Mean and Standard Deviation, 64.101. Besides, this research involves six classification techniques: Naïve Bayes, BayesNet, Random Forest, Random Tree, Logistics, and Multilayer Perceptron. Indeed, the combination of Resample and Random Forest has the best result of Precision, 0.941, and ROC Area is 0.983.","PeriodicalId":319652,"journal":{"name":"2022 IEEE International Conference on Computing (ICOCO)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Class Imbalance Detection And Classification Performance: A New Potential of Combination Resample and Random Forest\",\"authors\":\"A. Zakaria, A. Selamat, Lim Kok Cheng, O. Krejcar\",\"doi\":\"10.1109/ICOCO56118.2022.10031922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is a knowledge discovery of the data that extracts and discovers patterns and relationships to predict outcomes. Class imbalance is one of the obstacles that can drive misclassification. The class imbalance affected the result of classification machine learning. The classification technique can divide the data into the given class target. This research focuses on four pre-processing methods: SMOTE, Spread Subsample, Class Balancer, and Resample. These methods can help to clean the data before undergoing the classification techniques. Resample shows the best result for solving the imbalance problem with 41.321 for Mean and Standard Deviation, 64.101. Besides, this research involves six classification techniques: Naïve Bayes, BayesNet, Random Forest, Random Tree, Logistics, and Multilayer Perceptron. Indeed, the combination of Resample and Random Forest has the best result of Precision, 0.941, and ROC Area is 0.983.\",\"PeriodicalId\":319652,\"journal\":{\"name\":\"2022 IEEE International Conference on Computing (ICOCO)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Computing (ICOCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCO56118.2022.10031922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Computing (ICOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCO56118.2022.10031922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据挖掘是对数据的一种知识发现,通过提取和发现模式和关系来预测结果。类别不平衡是导致错误分类的障碍之一。类不平衡影响分类机器学习的结果。分类技术可以将数据划分为给定的类目标。本文主要研究了四种预处理方法:SMOTE、Spread Subsample、Class Balancer和ressample。这些方法可以帮助在进行分类技术之前清理数据。在解决不平衡问题时,样本均值和标准差分别为41.321和64.101。此外,本研究涉及六种分类技术:Naïve贝叶斯,贝叶斯网,随机森林,随机树,物流和多层感知器。的确,Resample和Random Forest的组合得到了精度为0.941的最佳结果,ROC Area为0.983。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Class Imbalance Detection And Classification Performance: A New Potential of Combination Resample and Random Forest
Data mining is a knowledge discovery of the data that extracts and discovers patterns and relationships to predict outcomes. Class imbalance is one of the obstacles that can drive misclassification. The class imbalance affected the result of classification machine learning. The classification technique can divide the data into the given class target. This research focuses on four pre-processing methods: SMOTE, Spread Subsample, Class Balancer, and Resample. These methods can help to clean the data before undergoing the classification techniques. Resample shows the best result for solving the imbalance problem with 41.321 for Mean and Standard Deviation, 64.101. Besides, this research involves six classification techniques: Naïve Bayes, BayesNet, Random Forest, Random Tree, Logistics, and Multilayer Perceptron. Indeed, the combination of Resample and Random Forest has the best result of Precision, 0.941, and ROC Area is 0.983.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信