R. Akiyama, Nozomi Abe, H. Fujita, Y. Inaba, Mari Hataoka, S. Ito, Satomi Seita
{"title":"类叠叠构象的最大属","authors":"R. Akiyama, Nozomi Abe, H. Fujita, Y. Inaba, Mari Hataoka, S. Ito, Satomi Seita","doi":"10.2478/rmm-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract We treat the boundary of the union of blocks in the Jenga game as a surface with a polyhedral structure and consider its genus. We generalize the game and determine the maximum genus among the configurations in the generalized game.","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Genus of the Jenga Like Configurations\",\"authors\":\"R. Akiyama, Nozomi Abe, H. Fujita, Y. Inaba, Mari Hataoka, S. Ito, Satomi Seita\",\"doi\":\"10.2478/rmm-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We treat the boundary of the union of blocks in the Jenga game as a surface with a polyhedral structure and consider its genus. We generalize the game and determine the maximum genus among the configurations in the generalized game.\",\"PeriodicalId\":120489,\"journal\":{\"name\":\"Recreational Mathematics Magazine\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recreational Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rmm-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract We treat the boundary of the union of blocks in the Jenga game as a surface with a polyhedral structure and consider its genus. We generalize the game and determine the maximum genus among the configurations in the generalized game.