{"title":"异步系统","authors":"T. Balanescu, R. Nicolescu, Huiling Wu","doi":"10.4018/jncr.2011040101","DOIUrl":null,"url":null,"abstract":"In this paper, the authors propose a new approach to fully asynchronous P systems, and a matching complexity measure, both inspired from the field of distributed algorithms. The authors validate the proposed approach by implementing several well-known distributed depth-first search (DFS) and breadth-first search (BFS) algorithms. Empirical results show that the proposed P algorithms have shorter descriptions and achieve a performance comparable to the corresponding distributed algorithms.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Asynchronous P Systems\",\"authors\":\"T. Balanescu, R. Nicolescu, Huiling Wu\",\"doi\":\"10.4018/jncr.2011040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors propose a new approach to fully asynchronous P systems, and a matching complexity measure, both inspired from the field of distributed algorithms. The authors validate the proposed approach by implementing several well-known distributed depth-first search (DFS) and breadth-first search (BFS) algorithms. Empirical results show that the proposed P algorithms have shorter descriptions and achieve a performance comparable to the corresponding distributed algorithms.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jncr.2011040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jncr.2011040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, the authors propose a new approach to fully asynchronous P systems, and a matching complexity measure, both inspired from the field of distributed algorithms. The authors validate the proposed approach by implementing several well-known distributed depth-first search (DFS) and breadth-first search (BFS) algorithms. Empirical results show that the proposed P algorithms have shorter descriptions and achieve a performance comparable to the corresponding distributed algorithms.