使用卷积神经网络的模糊特征测试自主网络物理系统:正在进行的工作

Sunny Raj, Sumit Kumar Jha, A. Ramanathan, L. Pullum
{"title":"使用卷积神经网络的模糊特征测试自主网络物理系统:正在进行的工作","authors":"Sunny Raj, Sumit Kumar Jha, A. Ramanathan, L. Pullum","doi":"10.1145/3125503.3125568","DOIUrl":null,"url":null,"abstract":"Autonomous cyber-physical systems rely on modern machine learning methods such as deep neural networks to control their interactions with the physical world. Testing of such intelligent cyber-physical systems is a challenge due to the huge state space associated with high-resolution visual sensory inputs. We demonstrate how fuzzing the input using patterns obtained from the convolutional filters of an unrelated convolutional neural network can be used to test computer vision algorithms implemented in intelligent cyber-physical systems. Our method discovers interesting counterexamples to a pedestrian detection algorithm implemented in the popular OpenCV library. Our approach also unearths counterexamples to the correct behavior of an autonomous car similar to NVIDIA's end-to-end self-driving deep neural net running on the Udacity open-source simulator.","PeriodicalId":143573,"journal":{"name":"International Conference on Embedded Software","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Testing autonomous cyber-physical systems using fuzzing features from convolutional neural networks: work-in-progress\",\"authors\":\"Sunny Raj, Sumit Kumar Jha, A. Ramanathan, L. Pullum\",\"doi\":\"10.1145/3125503.3125568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous cyber-physical systems rely on modern machine learning methods such as deep neural networks to control their interactions with the physical world. Testing of such intelligent cyber-physical systems is a challenge due to the huge state space associated with high-resolution visual sensory inputs. We demonstrate how fuzzing the input using patterns obtained from the convolutional filters of an unrelated convolutional neural network can be used to test computer vision algorithms implemented in intelligent cyber-physical systems. Our method discovers interesting counterexamples to a pedestrian detection algorithm implemented in the popular OpenCV library. Our approach also unearths counterexamples to the correct behavior of an autonomous car similar to NVIDIA's end-to-end self-driving deep neural net running on the Udacity open-source simulator.\",\"PeriodicalId\":143573,\"journal\":{\"name\":\"International Conference on Embedded Software\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Embedded Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3125503.3125568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125503.3125568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自主网络物理系统依赖于现代机器学习方法,如深度神经网络来控制它们与物理世界的交互。由于与高分辨率视觉感官输入相关的巨大状态空间,测试这种智能网络物理系统是一项挑战。我们演示了如何使用从不相关卷积神经网络的卷积滤波器中获得的模式对输入进行模糊处理,以测试智能网络物理系统中实现的计算机视觉算法。我们的方法发现了在流行的OpenCV库中实现的行人检测算法的有趣反例。我们的方法还揭示了自动驾驶汽车正确行为的反例,类似于NVIDIA在Udacity开源模拟器上运行的端到端自动驾驶深度神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing autonomous cyber-physical systems using fuzzing features from convolutional neural networks: work-in-progress
Autonomous cyber-physical systems rely on modern machine learning methods such as deep neural networks to control their interactions with the physical world. Testing of such intelligent cyber-physical systems is a challenge due to the huge state space associated with high-resolution visual sensory inputs. We demonstrate how fuzzing the input using patterns obtained from the convolutional filters of an unrelated convolutional neural network can be used to test computer vision algorithms implemented in intelligent cyber-physical systems. Our method discovers interesting counterexamples to a pedestrian detection algorithm implemented in the popular OpenCV library. Our approach also unearths counterexamples to the correct behavior of an autonomous car similar to NVIDIA's end-to-end self-driving deep neural net running on the Udacity open-source simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信