利用概率领域知识降低模板匹配的预期计算量

Avraham Margalit, Azriel Rosenfeld
{"title":"利用概率领域知识降低模板匹配的预期计算量","authors":"Avraham Margalit,&nbsp;Azriel Rosenfeld","doi":"10.1016/0734-189X(90)90001-C","DOIUrl":null,"url":null,"abstract":"<div><p>Matching of two digital images is computationally expensive, because it requires a pixel-by-pixel comparison of the pixels in the image and in the template. If we have probabilistic models for the classes of images being matched, we can reduce the expected computational cost of matching by comparing the pixels in an appropriate order. In this paper we show that the expected cumulative error when matching an image and a template is maximized by using an ordering technique. We also present experimental results for digital images, when we know the probability densities of their gray levels, or more generally, the probability densities of arrays of local property values derived from the images.</p></div>","PeriodicalId":100319,"journal":{"name":"Computer Vision, Graphics, and Image Processing","volume":"51 3","pages":"Pages 219-234"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0734-189X(90)90001-C","citationCount":"21","resultStr":"{\"title\":\"Using probabilistic domain knowledge to reduce the expected computational cost of template matching\",\"authors\":\"Avraham Margalit,&nbsp;Azriel Rosenfeld\",\"doi\":\"10.1016/0734-189X(90)90001-C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Matching of two digital images is computationally expensive, because it requires a pixel-by-pixel comparison of the pixels in the image and in the template. If we have probabilistic models for the classes of images being matched, we can reduce the expected computational cost of matching by comparing the pixels in an appropriate order. In this paper we show that the expected cumulative error when matching an image and a template is maximized by using an ordering technique. We also present experimental results for digital images, when we know the probability densities of their gray levels, or more generally, the probability densities of arrays of local property values derived from the images.</p></div>\",\"PeriodicalId\":100319,\"journal\":{\"name\":\"Computer Vision, Graphics, and Image Processing\",\"volume\":\"51 3\",\"pages\":\"Pages 219-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0734-189X(90)90001-C\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision, Graphics, and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0734189X9090001C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision, Graphics, and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0734189X9090001C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

两个数字图像的匹配在计算上是昂贵的,因为它需要对图像和模板中的像素进行逐像素的比较。如果我们有匹配图像类别的概率模型,我们可以通过以适当的顺序比较像素来减少匹配的预期计算成本。在本文中,我们证明了期望的累积误差匹配时,使用排序技术是最大的图像和模板。我们还提供了数字图像的实验结果,当我们知道其灰度级的概率密度时,或者更一般地说,从图像中导出的局部属性值阵列的概率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using probabilistic domain knowledge to reduce the expected computational cost of template matching

Matching of two digital images is computationally expensive, because it requires a pixel-by-pixel comparison of the pixels in the image and in the template. If we have probabilistic models for the classes of images being matched, we can reduce the expected computational cost of matching by comparing the pixels in an appropriate order. In this paper we show that the expected cumulative error when matching an image and a template is maximized by using an ordering technique. We also present experimental results for digital images, when we know the probability densities of their gray levels, or more generally, the probability densities of arrays of local property values derived from the images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信