{"title":"基于全连接卷积网络的gan人脸交换","authors":"Bo-Shue Lin, Ding-Wen Hsu, Chin-Han Shen, Hsu-Feng Hsiao","doi":"10.1109/APCCAS50809.2020.9301665","DOIUrl":null,"url":null,"abstract":"The lifelike results of using face swapping have contributed greatly to the research in computer vision. In this work, we extend the architecture of faceswap-GAN in order to obtain more natural results compared to the original framework. In the original architecture, the self-attention module usually converts the facial features from a source face to the target face with artificial distortion around the facial features. We use a structure of fully connected convolutional layers as a discriminator to approach the problem. The outcome can be smoother and more natural perceptually compared to the results using the original faceswap-GAN.","PeriodicalId":127075,"journal":{"name":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Fully Connected and Convolutional Net for GAN-Based Face Swapping\",\"authors\":\"Bo-Shue Lin, Ding-Wen Hsu, Chin-Han Shen, Hsu-Feng Hsiao\",\"doi\":\"10.1109/APCCAS50809.2020.9301665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lifelike results of using face swapping have contributed greatly to the research in computer vision. In this work, we extend the architecture of faceswap-GAN in order to obtain more natural results compared to the original framework. In the original architecture, the self-attention module usually converts the facial features from a source face to the target face with artificial distortion around the facial features. We use a structure of fully connected convolutional layers as a discriminator to approach the problem. The outcome can be smoother and more natural perceptually compared to the results using the original faceswap-GAN.\",\"PeriodicalId\":127075,\"journal\":{\"name\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS50809.2020.9301665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS50809.2020.9301665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Fully Connected and Convolutional Net for GAN-Based Face Swapping
The lifelike results of using face swapping have contributed greatly to the research in computer vision. In this work, we extend the architecture of faceswap-GAN in order to obtain more natural results compared to the original framework. In the original architecture, the self-attention module usually converts the facial features from a source face to the target face with artificial distortion around the facial features. We use a structure of fully connected convolutional layers as a discriminator to approach the problem. The outcome can be smoother and more natural perceptually compared to the results using the original faceswap-GAN.