{"title":"跟踪语义是完全抽象的","authors":"Sumit Nain, Moshe Y. Vardi","doi":"10.1109/LICS.2009.12","DOIUrl":null,"url":null,"abstract":"The discussion in the computer-science literature of the relative merits of linear- versus branching-time frameworks goes back to the early 1980s. One of the beliefs dominating this discussion has been that the linear-time framework is not expressive enough semantically, making linear-time logics lacking in expressiveness. In this work we examine the branching-linear issue from the perspective of process equivalence, which is one of the most fundamental concepts in concurrency theory, as defining a notion of equivalence essentially amounts to defining semantics for processes. We accept three principles that have been recently proposed for concurrent-process equivalence. The first principle takes contextual equivalence as the primary notion of equivalence. The second principle requires the description of a process to specify all relevant behavioral aspects of the process. The third principle requires observable process behavior to be reflected in its input/output behavior. It has been recently shown that under these principles trace semantics for nondeterministic transducers is fully abstract. Here we consider two extensions of the earlier model: probabilistic transducers and asynchronous transducers. We show that in both cases trace semantics is fully abstract.","PeriodicalId":415902,"journal":{"name":"2009 24th Annual IEEE Symposium on Logic In Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Trace Semantics is Fully Abstract\",\"authors\":\"Sumit Nain, Moshe Y. Vardi\",\"doi\":\"10.1109/LICS.2009.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discussion in the computer-science literature of the relative merits of linear- versus branching-time frameworks goes back to the early 1980s. One of the beliefs dominating this discussion has been that the linear-time framework is not expressive enough semantically, making linear-time logics lacking in expressiveness. In this work we examine the branching-linear issue from the perspective of process equivalence, which is one of the most fundamental concepts in concurrency theory, as defining a notion of equivalence essentially amounts to defining semantics for processes. We accept three principles that have been recently proposed for concurrent-process equivalence. The first principle takes contextual equivalence as the primary notion of equivalence. The second principle requires the description of a process to specify all relevant behavioral aspects of the process. The third principle requires observable process behavior to be reflected in its input/output behavior. It has been recently shown that under these principles trace semantics for nondeterministic transducers is fully abstract. Here we consider two extensions of the earlier model: probabilistic transducers and asynchronous transducers. We show that in both cases trace semantics is fully abstract.\",\"PeriodicalId\":415902,\"journal\":{\"name\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th Annual IEEE Symposium on Logic In Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2009.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Symposium on Logic In Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2009.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The discussion in the computer-science literature of the relative merits of linear- versus branching-time frameworks goes back to the early 1980s. One of the beliefs dominating this discussion has been that the linear-time framework is not expressive enough semantically, making linear-time logics lacking in expressiveness. In this work we examine the branching-linear issue from the perspective of process equivalence, which is one of the most fundamental concepts in concurrency theory, as defining a notion of equivalence essentially amounts to defining semantics for processes. We accept three principles that have been recently proposed for concurrent-process equivalence. The first principle takes contextual equivalence as the primary notion of equivalence. The second principle requires the description of a process to specify all relevant behavioral aspects of the process. The third principle requires observable process behavior to be reflected in its input/output behavior. It has been recently shown that under these principles trace semantics for nondeterministic transducers is fully abstract. Here we consider two extensions of the earlier model: probabilistic transducers and asynchronous transducers. We show that in both cases trace semantics is fully abstract.