从更像这个到比这个更好:来自用户评论的酒店推荐

Ruihai Dong, Barry Smyth
{"title":"从更像这个到比这个更好:来自用户评论的酒店推荐","authors":"Ruihai Dong, Barry Smyth","doi":"10.1145/2930238.2930276","DOIUrl":null,"url":null,"abstract":"To help users discover relevant products and items recommender systems must learn about the likes and dislikes of users and the pros and cons of items. In this paper, we present a novel approach to building rich feature-based user profiles and item descriptions by mining user-generated reviews. We show how this information can be integrated into recommender systems to deliver better recommendations and an improved user experience.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"From More-Like-This to Better-Than-This: Hotel Recommendations from User Generated Reviews\",\"authors\":\"Ruihai Dong, Barry Smyth\",\"doi\":\"10.1145/2930238.2930276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To help users discover relevant products and items recommender systems must learn about the likes and dislikes of users and the pros and cons of items. In this paper, we present a novel approach to building rich feature-based user profiles and item descriptions by mining user-generated reviews. We show how this information can be integrated into recommender systems to deliver better recommendations and an improved user experience.\",\"PeriodicalId\":339100,\"journal\":{\"name\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2930238.2930276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

为了帮助用户发现相关的产品和物品,推荐系统必须了解用户的喜好和厌恶,以及物品的优缺点。在本文中,我们提出了一种新的方法,通过挖掘用户生成的评论来构建丰富的基于特征的用户配置文件和项目描述。我们展示了如何将这些信息集成到推荐系统中,以提供更好的推荐和改进的用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From More-Like-This to Better-Than-This: Hotel Recommendations from User Generated Reviews
To help users discover relevant products and items recommender systems must learn about the likes and dislikes of users and the pros and cons of items. In this paper, we present a novel approach to building rich feature-based user profiles and item descriptions by mining user-generated reviews. We show how this information can be integrated into recommender systems to deliver better recommendations and an improved user experience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信