[0,1]上具有杀伤和分支的非保守扩散:在有或没有选择的Wright-Fisher模型中的应用

T. Huillet
{"title":"[0,1]上具有杀伤和分支的非保守扩散:在有或没有选择的Wright-Fisher模型中的应用","authors":"T. Huillet","doi":"10.1155/2011/605068","DOIUrl":null,"url":null,"abstract":"We consider nonconservative diffusion processes 𝑥𝑡 on the unit \ninterval, so with absorbing barriers. Using Doob-transformation \ntechniques involving superharmonic functions, we modify the \noriginal process to form a new diffusion process 𝑥𝑡 presenting an \nadditional killing rate part 𝑑>0. We limit ourselves to \nsituations for which 𝑥𝑡 is itself nonconservative with upper \nbounded killing rate. For this transformed process, we study \nvarious conditionings on events pertaining to both the killing and \nthe absorption times. We introduce the idea of a reciprocal Doob \ntransform: we start from the process 𝑥𝑡, apply the reciprocal \nDoob transform ending up in a new process which is 𝑥𝑡 but now with \nan additional branching rate 𝑏>0, which is also upper bounded. \nFor this supercritical binary branching diffusion, there is a \ntradeoff between branching events giving birth to new particles \nand absorption at the boundaries, killing the particles. Under our \nassumptions, the branching diffusion process gets eventually \nglobally extinct in finite time. We apply these ideas to diffusion \nprocesses arising in population genetics. In this setup, the \nprocess 𝑥𝑡 is a Wright-Fisher diffusion with selection. Using an \nexponential Doob transform, we end up with a killed neutral \nWright-Fisher diffusion 𝑥𝑡. We give a detailed study of the \nbinary branching diffusion process obtained by using the \ncorresponding reciprocal Doob transform.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonconservative Diffusions on [0,1] with Killing and Branching: Applications to Wright-Fisher Models with or without Selection\",\"authors\":\"T. Huillet\",\"doi\":\"10.1155/2011/605068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider nonconservative diffusion processes 𝑥𝑡 on the unit \\ninterval, so with absorbing barriers. Using Doob-transformation \\ntechniques involving superharmonic functions, we modify the \\noriginal process to form a new diffusion process 𝑥𝑡 presenting an \\nadditional killing rate part 𝑑>0. We limit ourselves to \\nsituations for which 𝑥𝑡 is itself nonconservative with upper \\nbounded killing rate. For this transformed process, we study \\nvarious conditionings on events pertaining to both the killing and \\nthe absorption times. We introduce the idea of a reciprocal Doob \\ntransform: we start from the process 𝑥𝑡, apply the reciprocal \\nDoob transform ending up in a new process which is 𝑥𝑡 but now with \\nan additional branching rate 𝑏>0, which is also upper bounded. \\nFor this supercritical binary branching diffusion, there is a \\ntradeoff between branching events giving birth to new particles \\nand absorption at the boundaries, killing the particles. Under our \\nassumptions, the branching diffusion process gets eventually \\nglobally extinct in finite time. We apply these ideas to diffusion \\nprocesses arising in population genetics. In this setup, the \\nprocess 𝑥𝑡 is a Wright-Fisher diffusion with selection. Using an \\nexponential Doob transform, we end up with a killed neutral \\nWright-Fisher diffusion 𝑥𝑡. We give a detailed study of the \\nbinary branching diffusion process obtained by using the \\ncorresponding reciprocal Doob transform.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/605068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/605068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑单位区间上的非保守扩散过程,因此有吸收障碍。利用涉及超谐波函数的doob变换技术,我们修改了原始过程,形成了一个新的扩散过程≥𝑡,并增加了一个杀率部分𝑑>0 0。我们将自己限制在≥𝑡本身是非保守的,并且具有上界的死亡率的情况下。对于这一转化过程,我们研究了与杀伤时间和吸收时间有关的各种条件。我们引入了一个互倒的Doob变换的思想:我们从过程-𝑡开始,应用互倒的Doob变换,最终得到一个新的过程,这个过程是-𝑡,但是现在有了一个额外的分支率𝑏>0 0,这也是上界。对于这种超临界双分支扩散,在分支事件产生新粒子和边界吸收杀死粒子之间存在权衡。在我们的假设下,分支扩散过程最终在有限时间内全局灭绝。我们将这些想法应用于群体遗传学中产生的扩散过程。在这种情况下,过程(≥𝑡)是具有选择的Wright-Fisher扩散。使用指数Doob变换,我们最终得到一个消灭中立的Wright-Fisher扩散≥𝑡。我们详细研究了用相应的互反Doob变换得到的二元分支扩散过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonconservative Diffusions on [0,1] with Killing and Branching: Applications to Wright-Fisher Models with or without Selection
We consider nonconservative diffusion processes 𝑥𝑡 on the unit interval, so with absorbing barriers. Using Doob-transformation techniques involving superharmonic functions, we modify the original process to form a new diffusion process 𝑥𝑡 presenting an additional killing rate part 𝑑>0. We limit ourselves to situations for which 𝑥𝑡 is itself nonconservative with upper bounded killing rate. For this transformed process, we study various conditionings on events pertaining to both the killing and the absorption times. We introduce the idea of a reciprocal Doob transform: we start from the process 𝑥𝑡, apply the reciprocal Doob transform ending up in a new process which is 𝑥𝑡 but now with an additional branching rate 𝑏>0, which is also upper bounded. For this supercritical binary branching diffusion, there is a tradeoff between branching events giving birth to new particles and absorption at the boundaries, killing the particles. Under our assumptions, the branching diffusion process gets eventually globally extinct in finite time. We apply these ideas to diffusion processes arising in population genetics. In this setup, the process 𝑥𝑡 is a Wright-Fisher diffusion with selection. Using an exponential Doob transform, we end up with a killed neutral Wright-Fisher diffusion 𝑥𝑡. We give a detailed study of the binary branching diffusion process obtained by using the corresponding reciprocal Doob transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信