高维统计中的平均场渐近性:从精确结果到高效算法

A. Montanari
{"title":"高维统计中的平均场渐近性:从精确结果到高效算法","authors":"A. Montanari","doi":"10.1142/9789813272880_0168","DOIUrl":null,"url":null,"abstract":"Modern data analysis challenges require building complex statistical models with massive numbers of parameters. It is nowadays commonplace to learn models with millions of parameters by using iterative optimization algorithms. What are typical properties of the estimated models? In some cases, the high-dimensional limit of a statistical estimator is analogous to the thermodynamic limit of a certain (disordered) statistical mechanics system. Building on mathematical ideas from the mean-field theory of disordered systems, exact asymptotics can be computed for high-dimensional statistical learning problems. This theory suggests new practical algorithms and new procedures for statistical inference. Also, it leads to intriguing conjectures about the fundamental computational limits for statistical estimation.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MEAN FIELD ASYMPTOTICS IN HIGH-DIMENSIONAL STATISTICS: FROM EXACT RESULTS TO EFFICIENT ALGORITHMS\",\"authors\":\"A. Montanari\",\"doi\":\"10.1142/9789813272880_0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern data analysis challenges require building complex statistical models with massive numbers of parameters. It is nowadays commonplace to learn models with millions of parameters by using iterative optimization algorithms. What are typical properties of the estimated models? In some cases, the high-dimensional limit of a statistical estimator is analogous to the thermodynamic limit of a certain (disordered) statistical mechanics system. Building on mathematical ideas from the mean-field theory of disordered systems, exact asymptotics can be computed for high-dimensional statistical learning problems. This theory suggests new practical algorithms and new procedures for statistical inference. Also, it leads to intriguing conjectures about the fundamental computational limits for statistical estimation.\",\"PeriodicalId\":318252,\"journal\":{\"name\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813272880_0168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

现代数据分析挑战需要构建具有大量参数的复杂统计模型。目前,使用迭代优化算法来学习具有数百万个参数的模型是很常见的。估计模型的典型特性是什么?在某些情况下,统计估计量的高维极限类似于某个(无序)统计力学系统的热力学极限。建立在无序系统平均场理论的数学思想上,精确渐近可以计算高维统计学习问题。这一理论为统计推断提供了新的实用算法和新的程序。此外,它还导致了关于统计估计的基本计算极限的有趣猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEAN FIELD ASYMPTOTICS IN HIGH-DIMENSIONAL STATISTICS: FROM EXACT RESULTS TO EFFICIENT ALGORITHMS
Modern data analysis challenges require building complex statistical models with massive numbers of parameters. It is nowadays commonplace to learn models with millions of parameters by using iterative optimization algorithms. What are typical properties of the estimated models? In some cases, the high-dimensional limit of a statistical estimator is analogous to the thermodynamic limit of a certain (disordered) statistical mechanics system. Building on mathematical ideas from the mean-field theory of disordered systems, exact asymptotics can be computed for high-dimensional statistical learning problems. This theory suggests new practical algorithms and new procedures for statistical inference. Also, it leads to intriguing conjectures about the fundamental computational limits for statistical estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信