采用物联网和机器学习的无刷直流电机经济高效的实时状态监测和故障诊断系统

H. Raja, H. Raval, T. Vaimann, A. Kallaste, A. Rassõlkin, A. Belahcen
{"title":"采用物联网和机器学习的无刷直流电机经济高效的实时状态监测和故障诊断系统","authors":"H. Raja, H. Raval, T. Vaimann, A. Kallaste, A. Rassõlkin, A. Belahcen","doi":"10.1109/Diagnostika55131.2022.9905102","DOIUrl":null,"url":null,"abstract":"A cost-efficient condition monitoring and fault diagnostic system are presented in this paper using the Internet of Things and machine learning. Most condition monitoring systems nowadays are either costly or used to monitor current values without emphasizing the analysis part. On the other hand, predictive maintenance of different electrical machines, including BLDC motors, is becoming the need of the hour. It reduces the cost needed for maintenance and can also be used to evade more significant faults in the machine. The data is transmitted in real-time using a data acquisition system onto the cloud, which is further processed to determine if there is a chance of any fault occurring in the motor. A short comparison of the results of different machine learning algorithms is also discussed related to predictive maintenance.","PeriodicalId":374245,"journal":{"name":"2022 International Conference on Diagnostics in Electrical Engineering (Diagnostika)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cost-efficient real-time condition monitoring and fault diagnostics system for BLDC motor using IoT and Machine learning\",\"authors\":\"H. Raja, H. Raval, T. Vaimann, A. Kallaste, A. Rassõlkin, A. Belahcen\",\"doi\":\"10.1109/Diagnostika55131.2022.9905102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cost-efficient condition monitoring and fault diagnostic system are presented in this paper using the Internet of Things and machine learning. Most condition monitoring systems nowadays are either costly or used to monitor current values without emphasizing the analysis part. On the other hand, predictive maintenance of different electrical machines, including BLDC motors, is becoming the need of the hour. It reduces the cost needed for maintenance and can also be used to evade more significant faults in the machine. The data is transmitted in real-time using a data acquisition system onto the cloud, which is further processed to determine if there is a chance of any fault occurring in the motor. A short comparison of the results of different machine learning algorithms is also discussed related to predictive maintenance.\",\"PeriodicalId\":374245,\"journal\":{\"name\":\"2022 International Conference on Diagnostics in Electrical Engineering (Diagnostika)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Diagnostics in Electrical Engineering (Diagnostika)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Diagnostika55131.2022.9905102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Diagnostics in Electrical Engineering (Diagnostika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Diagnostika55131.2022.9905102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于物联网和机器学习的低成本状态监测和故障诊断系统。目前大多数状态监测系统要么价格昂贵,要么用于监测电流值,而不重视分析部分。另一方面,包括无刷直流电机在内的各种电机的预测性维护正在成为当前的需求。它降低了维护所需的成本,也可以用来避免机器中更重大的故障。使用数据采集系统将数据实时传输到云端,并对其进行进一步处理,以确定电机是否有可能发生故障。本文还讨论了与预测性维护相关的不同机器学习算法的结果的简短比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-efficient real-time condition monitoring and fault diagnostics system for BLDC motor using IoT and Machine learning
A cost-efficient condition monitoring and fault diagnostic system are presented in this paper using the Internet of Things and machine learning. Most condition monitoring systems nowadays are either costly or used to monitor current values without emphasizing the analysis part. On the other hand, predictive maintenance of different electrical machines, including BLDC motors, is becoming the need of the hour. It reduces the cost needed for maintenance and can also be used to evade more significant faults in the machine. The data is transmitted in real-time using a data acquisition system onto the cloud, which is further processed to determine if there is a chance of any fault occurring in the motor. A short comparison of the results of different machine learning algorithms is also discussed related to predictive maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信