{"title":"步进电压优化防雷接地端系统分析与仿真","authors":"R. Brocke, V. Hinrichsen, S. Suchanek, Jing Gao","doi":"10.1109/SIPDA.2011.6088444","DOIUrl":null,"url":null,"abstract":"Earth-Termination Systems as an important part of the Lightning Protection Systems must be designed in a way that lightning currents are safely diverted into the ground without generating step-voltages on the surface of the soil that would be dangerous to human beings. The paper considers safety limits for step-voltages and examines the effectiveness of several design principles of earth-termination systems using the possibilities of finite element computer simulations.","PeriodicalId":277573,"journal":{"name":"2011 International Symposium on Lightning Protection","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Step-voltage-optimized Lightning Protection earth-termination systems analysis and simulation\",\"authors\":\"R. Brocke, V. Hinrichsen, S. Suchanek, Jing Gao\",\"doi\":\"10.1109/SIPDA.2011.6088444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earth-Termination Systems as an important part of the Lightning Protection Systems must be designed in a way that lightning currents are safely diverted into the ground without generating step-voltages on the surface of the soil that would be dangerous to human beings. The paper considers safety limits for step-voltages and examines the effectiveness of several design principles of earth-termination systems using the possibilities of finite element computer simulations.\",\"PeriodicalId\":277573,\"journal\":{\"name\":\"2011 International Symposium on Lightning Protection\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Symposium on Lightning Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPDA.2011.6088444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Lightning Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPDA.2011.6088444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Step-voltage-optimized Lightning Protection earth-termination systems analysis and simulation
Earth-Termination Systems as an important part of the Lightning Protection Systems must be designed in a way that lightning currents are safely diverted into the ground without generating step-voltages on the surface of the soil that would be dangerous to human beings. The paper considers safety limits for step-voltages and examines the effectiveness of several design principles of earth-termination systems using the possibilities of finite element computer simulations.