Mohammed Rakib, Md. Ismail Hossain, Nabeel Mohammed, F. Rahman
{"title":"Bangla- wave:利用N-gram语言模型改进孟加拉语自动语音识别","authors":"Mohammed Rakib, Md. Ismail Hossain, Nabeel Mohammed, F. Rahman","doi":"10.1145/3587828.3587872","DOIUrl":null,"url":null,"abstract":"Although over 300M around the world speak Bangla, scant work has been done in improving Bangla voice-to-text transcription due to Bangla being a low-resource language. However, with the introduction of the Bengali Common Voice 9.0 speech dataset, Automatic Speech Recognition (ASR) models can now be significantly improved. With 399hrs of speech recordings, Bengali Common Voice is the largest and most diversified open-source Bengali speech corpus in the world. In this paper, we outperform the State-of-the-Art (SOTA) pretrained Bengali ASR models by finetuning a pretrained wav2vec2 model on the common voice dataset. We also demonstrate how to significantly improve the performance of an ASR model by adding an n-gram language model as a post-processor. Finally, we do some experiments and hyperparameter tuning to generate a robust Bangla ASR model that is better than the existing ASR models.","PeriodicalId":340917,"journal":{"name":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bangla-Wave: Improving Bangla Automatic Speech Recognition Utilizing N-gram Language Models\",\"authors\":\"Mohammed Rakib, Md. Ismail Hossain, Nabeel Mohammed, F. Rahman\",\"doi\":\"10.1145/3587828.3587872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although over 300M around the world speak Bangla, scant work has been done in improving Bangla voice-to-text transcription due to Bangla being a low-resource language. However, with the introduction of the Bengali Common Voice 9.0 speech dataset, Automatic Speech Recognition (ASR) models can now be significantly improved. With 399hrs of speech recordings, Bengali Common Voice is the largest and most diversified open-source Bengali speech corpus in the world. In this paper, we outperform the State-of-the-Art (SOTA) pretrained Bengali ASR models by finetuning a pretrained wav2vec2 model on the common voice dataset. We also demonstrate how to significantly improve the performance of an ASR model by adding an n-gram language model as a post-processor. Finally, we do some experiments and hyperparameter tuning to generate a robust Bangla ASR model that is better than the existing ASR models.\",\"PeriodicalId\":340917,\"journal\":{\"name\":\"Proceedings of the 2023 12th International Conference on Software and Computer Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 12th International Conference on Software and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3587828.3587872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587828.3587872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bangla-Wave: Improving Bangla Automatic Speech Recognition Utilizing N-gram Language Models
Although over 300M around the world speak Bangla, scant work has been done in improving Bangla voice-to-text transcription due to Bangla being a low-resource language. However, with the introduction of the Bengali Common Voice 9.0 speech dataset, Automatic Speech Recognition (ASR) models can now be significantly improved. With 399hrs of speech recordings, Bengali Common Voice is the largest and most diversified open-source Bengali speech corpus in the world. In this paper, we outperform the State-of-the-Art (SOTA) pretrained Bengali ASR models by finetuning a pretrained wav2vec2 model on the common voice dataset. We also demonstrate how to significantly improve the performance of an ASR model by adding an n-gram language model as a post-processor. Finally, we do some experiments and hyperparameter tuning to generate a robust Bangla ASR model that is better than the existing ASR models.