基于条件SinGAN的约束多目标场景图像生成

Li Xinwei, Guo Jinlin, Dou Jinshen, Lao Songyang
{"title":"基于条件SinGAN的约束多目标场景图像生成","authors":"Li Xinwei, Guo Jinlin, Dou Jinshen, Lao Songyang","doi":"10.1109/ICSP51882.2021.9408686","DOIUrl":null,"url":null,"abstract":"As a variant of generative adversial network(GAN), SinGAN has been attracting a lot of research interest. Aiming at the disadvantage that SinGAN can easily generate multi-target images that do not conform to human logic, and the randomness of generating images is exsiting, simutaneously, the controllability of the generated images are poor, we have improved SinGAN’s architecture and loss function, and made it a conditional GAN instead of the original nonconditional GAN, so as to make the images more reasonable in spatial layout and semantic information. Conditional SinGAN realizes the function of manipulating the number and layout of the target in the image with the subjective will of the users. The experimental results show that conditional SinGAN has achieved ideal effect.","PeriodicalId":117159,"journal":{"name":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generating Constrained Multi-target Scene Images Using Conditional SinGAN\",\"authors\":\"Li Xinwei, Guo Jinlin, Dou Jinshen, Lao Songyang\",\"doi\":\"10.1109/ICSP51882.2021.9408686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a variant of generative adversial network(GAN), SinGAN has been attracting a lot of research interest. Aiming at the disadvantage that SinGAN can easily generate multi-target images that do not conform to human logic, and the randomness of generating images is exsiting, simutaneously, the controllability of the generated images are poor, we have improved SinGAN’s architecture and loss function, and made it a conditional GAN instead of the original nonconditional GAN, so as to make the images more reasonable in spatial layout and semantic information. Conditional SinGAN realizes the function of manipulating the number and layout of the target in the image with the subjective will of the users. The experimental results show that conditional SinGAN has achieved ideal effect.\",\"PeriodicalId\":117159,\"journal\":{\"name\":\"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSP51882.2021.9408686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP51882.2021.9408686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为生成对抗网络(GAN)的一种变体,SinGAN已经引起了广泛的研究兴趣。针对SinGAN算法容易生成不符合人类逻辑的多目标图像,并且存在生成图像的随机性,同时生成图像的可控制性较差的缺点,我们改进了SinGAN的架构和损失函数,将原有的非条件GAN改为条件GAN,使图像在空间布局和语义信息上更加合理。有条件的SinGAN根据用户的主观意愿,实现了对图像中目标的数量和布局进行操纵的功能。实验结果表明,条件SinGAN取得了理想的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Constrained Multi-target Scene Images Using Conditional SinGAN
As a variant of generative adversial network(GAN), SinGAN has been attracting a lot of research interest. Aiming at the disadvantage that SinGAN can easily generate multi-target images that do not conform to human logic, and the randomness of generating images is exsiting, simutaneously, the controllability of the generated images are poor, we have improved SinGAN’s architecture and loss function, and made it a conditional GAN instead of the original nonconditional GAN, so as to make the images more reasonable in spatial layout and semantic information. Conditional SinGAN realizes the function of manipulating the number and layout of the target in the image with the subjective will of the users. The experimental results show that conditional SinGAN has achieved ideal effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信