{"title":"DNA中的交叉棒互连网络","authors":"B. Talawar","doi":"10.1109/IPDPSW.2015.103","DOIUrl":null,"url":null,"abstract":"DNA computers provide exciting challenges and opportunities in the fields of computer architecture, neural networks, autonomous micromechanical devices, and chemical reaction networks. The advent of digital abstractions such as the seesaw gates hold many opportunities for computer architects to realize complex digital circuits using DNA strand displacement principles. The paper presents a realization of a single bit, 2×2 crossbar interconnection network built using seesaw gates. The functional correctness of the implemented crossbar was verified using a chemical reaction simulator.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Crossbar Interconnection Network in DNA\",\"authors\":\"B. Talawar\",\"doi\":\"10.1109/IPDPSW.2015.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA computers provide exciting challenges and opportunities in the fields of computer architecture, neural networks, autonomous micromechanical devices, and chemical reaction networks. The advent of digital abstractions such as the seesaw gates hold many opportunities for computer architects to realize complex digital circuits using DNA strand displacement principles. The paper presents a realization of a single bit, 2×2 crossbar interconnection network built using seesaw gates. The functional correctness of the implemented crossbar was verified using a chemical reaction simulator.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DNA computers provide exciting challenges and opportunities in the fields of computer architecture, neural networks, autonomous micromechanical devices, and chemical reaction networks. The advent of digital abstractions such as the seesaw gates hold many opportunities for computer architects to realize complex digital circuits using DNA strand displacement principles. The paper presents a realization of a single bit, 2×2 crossbar interconnection network built using seesaw gates. The functional correctness of the implemented crossbar was verified using a chemical reaction simulator.