基于复小波理论的风电功率预测模型

S. Mishra, Anuj Sharma, G. Panda
{"title":"基于复小波理论的风电功率预测模型","authors":"S. Mishra, Anuj Sharma, G. Panda","doi":"10.1109/ICEAS.2011.6147151","DOIUrl":null,"url":null,"abstract":"Due to growing share of wind power in world's energy consumption, forecasting of the wind power becomes essential for proper utilization. This paper proposes short term wind power forecasting model using complex wavelet transform and neural network. The past wind power values are transferred into real and complex signal; which are further transferred in Wavelet domain signal. These signals are used to predict next hour wind power using neural network. This approach is tested using data from Alberta wind farm.","PeriodicalId":273164,"journal":{"name":"2011 International Conference on Energy, Automation and Signal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Wind power forecasting model using complex wavelet theory\",\"authors\":\"S. Mishra, Anuj Sharma, G. Panda\",\"doi\":\"10.1109/ICEAS.2011.6147151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to growing share of wind power in world's energy consumption, forecasting of the wind power becomes essential for proper utilization. This paper proposes short term wind power forecasting model using complex wavelet transform and neural network. The past wind power values are transferred into real and complex signal; which are further transferred in Wavelet domain signal. These signals are used to predict next hour wind power using neural network. This approach is tested using data from Alberta wind farm.\",\"PeriodicalId\":273164,\"journal\":{\"name\":\"2011 International Conference on Energy, Automation and Signal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Energy, Automation and Signal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAS.2011.6147151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Energy, Automation and Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAS.2011.6147151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于风电在世界能源消费中所占的份额越来越大,对风电的预测对于风电的合理利用至关重要。本文提出了基于复小波变换和神经网络的短期风电预测模型。将过去的风电值转换为实复信号;再将其转换成小波域信号。这些信号被用来用神经网络预测下一小时的风力。这种方法使用阿尔伯塔风电场的数据进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wind power forecasting model using complex wavelet theory
Due to growing share of wind power in world's energy consumption, forecasting of the wind power becomes essential for proper utilization. This paper proposes short term wind power forecasting model using complex wavelet transform and neural network. The past wind power values are transferred into real and complex signal; which are further transferred in Wavelet domain signal. These signals are used to predict next hour wind power using neural network. This approach is tested using data from Alberta wind farm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信