次多项式熵仿射源的分散体

Ronen Shaltiel
{"title":"次多项式熵仿射源的分散体","authors":"Ronen Shaltiel","doi":"10.1109/FOCS.2011.37","DOIUrl":null,"url":null,"abstract":"We construct an explicit disperser for affine sources over $\\F_2^n$ with entropy $k=2^{\\log^{0.9} n}=n^{o(1)}$. This is a polynomial time computable function $D:\\F_2^n \\ar \\B$ such that for every affine space $V$ of $\\F_2^n$ that has dimension at least $k$, $D(V)=\\set{0,1}$. This improves the best previous construction of Ben-Sasson and Kop party (STOC 2009) that achieved $k = \\Omega(n^{4/5})$.Our technique follows a high level approach that was developed in Barak, Kindler, Shaltiel, Sudakov and Wigderson (J. ACM 2010) and Barak, Rao, Shaltiel and Wigderson (STOC 2006) in the context of dispersers for two independent general sources. The main steps are:\\begin{itemize}\\item Adjust the high level approach to make it suitable for affine sources. \\item Implement a ``challenge-response game'' for affine sources (in the spirit of the two aforementioned papers that introduced such games for two independent general sources).\\item In order to implement the game, we construct extractors for affine block-wise sources. For this we use ideas and components by Rao (CCC 2009). \\item Combining the three items above, we obtain dispersers for affine sources with entropy larger than $\\sqrt{n}$.We use a recursive win-win analysis in the spirit of Rein gold, Shaltiel and Wigderson (SICOMP 2006) and Barak, Rao, Shaltiel and Wigderson (STOC 2006) to get affine dispersers with entropy less than $\\sqrt{n}$.\\end{itemize}","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Dispersers for Affine Sources with Sub-polynomial Entropy\",\"authors\":\"Ronen Shaltiel\",\"doi\":\"10.1109/FOCS.2011.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct an explicit disperser for affine sources over $\\\\F_2^n$ with entropy $k=2^{\\\\log^{0.9} n}=n^{o(1)}$. This is a polynomial time computable function $D:\\\\F_2^n \\\\ar \\\\B$ such that for every affine space $V$ of $\\\\F_2^n$ that has dimension at least $k$, $D(V)=\\\\set{0,1}$. This improves the best previous construction of Ben-Sasson and Kop party (STOC 2009) that achieved $k = \\\\Omega(n^{4/5})$.Our technique follows a high level approach that was developed in Barak, Kindler, Shaltiel, Sudakov and Wigderson (J. ACM 2010) and Barak, Rao, Shaltiel and Wigderson (STOC 2006) in the context of dispersers for two independent general sources. The main steps are:\\\\begin{itemize}\\\\item Adjust the high level approach to make it suitable for affine sources. \\\\item Implement a ``challenge-response game'' for affine sources (in the spirit of the two aforementioned papers that introduced such games for two independent general sources).\\\\item In order to implement the game, we construct extractors for affine block-wise sources. For this we use ideas and components by Rao (CCC 2009). \\\\item Combining the three items above, we obtain dispersers for affine sources with entropy larger than $\\\\sqrt{n}$.We use a recursive win-win analysis in the spirit of Rein gold, Shaltiel and Wigderson (SICOMP 2006) and Barak, Rao, Shaltiel and Wigderson (STOC 2006) to get affine dispersers with entropy less than $\\\\sqrt{n}$.\\\\end{itemize}\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

我们构造了一个显式分散器,用于$\F_2^n$上的仿射源,熵为$k=2^{\log^{0.9} n}=n^{o(1)}$。这是一个多项式时间可计算的函数$D:\F_2^n \ar \B$对于$\F_2^n$的每个仿射空间$V$至少有维数$k$$D(V)=\set{0,1}$。这改进了本-萨森和Kop党(STOC 2009)之前的最佳构建,实现了$k = \Omega(n^{4/5})$。我们的技术遵循巴拉克,Kindler, Shaltiel, Sudakov和Wigderson (J. ACM 2010)和巴拉克,Rao, Shaltiel和Wigderson (STOC 2006)在两个独立一般来源的分散器背景下开发的高水平方法。主要步骤是:\begin{itemize}\item 调整高电平方法,使其适合于仿射源。 \item 针对仿射源执行“挑战-回应游戏”(基于前面提到的两篇文章的精神,这两篇文章介绍了针对两个独立的通用源的这类游戏)。\item 为了实现游戏,我们构建了仿射块源的提取器。为此,我们使用Rao (CCC 2009)的想法和组件。 \item 结合以上三项,我们得到了熵大于$\sqrt{n}$的仿射源的分散体。我们按照Rein gold, Shaltiel和Wigderson (SICOMP 2006)和Barak, Rao, Shaltiel和Wigderson (STOC 2006)的精神,使用递归双赢分析得到熵小于$\sqrt{n}$的仿射分散体。\end{itemize}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispersers for Affine Sources with Sub-polynomial Entropy
We construct an explicit disperser for affine sources over $\F_2^n$ with entropy $k=2^{\log^{0.9} n}=n^{o(1)}$. This is a polynomial time computable function $D:\F_2^n \ar \B$ such that for every affine space $V$ of $\F_2^n$ that has dimension at least $k$, $D(V)=\set{0,1}$. This improves the best previous construction of Ben-Sasson and Kop party (STOC 2009) that achieved $k = \Omega(n^{4/5})$.Our technique follows a high level approach that was developed in Barak, Kindler, Shaltiel, Sudakov and Wigderson (J. ACM 2010) and Barak, Rao, Shaltiel and Wigderson (STOC 2006) in the context of dispersers for two independent general sources. The main steps are:\begin{itemize}\item Adjust the high level approach to make it suitable for affine sources. \item Implement a ``challenge-response game'' for affine sources (in the spirit of the two aforementioned papers that introduced such games for two independent general sources).\item In order to implement the game, we construct extractors for affine block-wise sources. For this we use ideas and components by Rao (CCC 2009). \item Combining the three items above, we obtain dispersers for affine sources with entropy larger than $\sqrt{n}$.We use a recursive win-win analysis in the spirit of Rein gold, Shaltiel and Wigderson (SICOMP 2006) and Barak, Rao, Shaltiel and Wigderson (STOC 2006) to get affine dispersers with entropy less than $\sqrt{n}$.\end{itemize}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信