最优输出反馈控制器的计算设计

T. Rautert, E. Sachs
{"title":"最优输出反馈控制器的计算设计","authors":"T. Rautert, E. Sachs","doi":"10.1137/S1052623495290441","DOIUrl":null,"url":null,"abstract":"We consider the problem of designing feedback control laws when a complete set of state variables is not available. For linear autonomous systems with quadratic performance criterion, the design problem consists of choosing an appropriate matrix of feedback gains according to a certain objective function. In the literature, the performance of quasi-Newton methods has been reported to be substandard. We try to explain some of these observations and to propose structured quasi-Newton updates. These methods, which take into account the special structure of the problem, show considerable improvement in the convergence. Using test examples from optimal output feedback design, we also can verify these results numerically.","PeriodicalId":142744,"journal":{"name":"Universität Trier, Mathematik/Informatik, Forschungsbericht","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Computational Design of Optimal Output Feedback Controllers\",\"authors\":\"T. Rautert, E. Sachs\",\"doi\":\"10.1137/S1052623495290441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of designing feedback control laws when a complete set of state variables is not available. For linear autonomous systems with quadratic performance criterion, the design problem consists of choosing an appropriate matrix of feedback gains according to a certain objective function. In the literature, the performance of quasi-Newton methods has been reported to be substandard. We try to explain some of these observations and to propose structured quasi-Newton updates. These methods, which take into account the special structure of the problem, show considerable improvement in the convergence. Using test examples from optimal output feedback design, we also can verify these results numerically.\",\"PeriodicalId\":142744,\"journal\":{\"name\":\"Universität Trier, Mathematik/Informatik, Forschungsbericht\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universität Trier, Mathematik/Informatik, Forschungsbericht\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/S1052623495290441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universität Trier, Mathematik/Informatik, Forschungsbericht","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/S1052623495290441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

研究了不存在完整状态变量集时反馈控制律的设计问题。对于具有二次型性能准则的线性自治系统,设计问题是根据一定的目标函数选择合适的反馈增益矩阵。在文献中,准牛顿方法的性能被报道为不合格。我们试图解释其中的一些观测结果,并提出结构化的准牛顿更新。这些方法考虑到问题的特殊结构,在收敛性方面有很大的提高。通过最优输出反馈设计的测试实例,我们也可以在数值上验证这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Design of Optimal Output Feedback Controllers
We consider the problem of designing feedback control laws when a complete set of state variables is not available. For linear autonomous systems with quadratic performance criterion, the design problem consists of choosing an appropriate matrix of feedback gains according to a certain objective function. In the literature, the performance of quasi-Newton methods has been reported to be substandard. We try to explain some of these observations and to propose structured quasi-Newton updates. These methods, which take into account the special structure of the problem, show considerable improvement in the convergence. Using test examples from optimal output feedback design, we also can verify these results numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信