基于示例的图像压缩

Jingtao Cui, S. Mathur, Michele Covell, Vivek Kwatra, Mei Han
{"title":"基于示例的图像压缩","authors":"Jingtao Cui, S. Mathur, Michele Covell, Vivek Kwatra, Mei Han","doi":"10.1109/ICIP.2010.5652402","DOIUrl":null,"url":null,"abstract":"The current standard image-compression approaches rely on fairly simple predictions, using either block- or wavelet-based methods. While many more sophisticated texture-modeling approaches have been proposed, most do not provide a significant improvement in compression rate over the current standards at a workable encoding complexity level. We re-examine this area, using example-based texture prediction. We find that we can provide consistent and significant improvements over JPEG, reducing the bit rate by more than 20% for many PSNR levels. These improvements require consideration of the differences between residual energy and prediction/residual compressibility when selecting a texture prediction, as well as careful control of the computational complexity in encoding.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Example-based image compression\",\"authors\":\"Jingtao Cui, S. Mathur, Michele Covell, Vivek Kwatra, Mei Han\",\"doi\":\"10.1109/ICIP.2010.5652402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current standard image-compression approaches rely on fairly simple predictions, using either block- or wavelet-based methods. While many more sophisticated texture-modeling approaches have been proposed, most do not provide a significant improvement in compression rate over the current standards at a workable encoding complexity level. We re-examine this area, using example-based texture prediction. We find that we can provide consistent and significant improvements over JPEG, reducing the bit rate by more than 20% for many PSNR levels. These improvements require consideration of the differences between residual energy and prediction/residual compressibility when selecting a texture prediction, as well as careful control of the computational complexity in encoding.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5652402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5652402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前的标准图像压缩方法依赖于相当简单的预测,使用基于块或基于小波的方法。虽然已经提出了许多更复杂的纹理建模方法,但在可行的编码复杂度级别上,大多数都没有提供比当前标准在压缩率方面的显着改进。我们使用基于示例的纹理预测来重新检查这个区域。我们发现我们可以提供与JPEG一致且显著的改进,在许多PSNR级别将比特率降低20%以上。这些改进需要在选择纹理预测时考虑剩余能量和预测/剩余压缩性之间的差异,以及在编码时仔细控制计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Example-based image compression
The current standard image-compression approaches rely on fairly simple predictions, using either block- or wavelet-based methods. While many more sophisticated texture-modeling approaches have been proposed, most do not provide a significant improvement in compression rate over the current standards at a workable encoding complexity level. We re-examine this area, using example-based texture prediction. We find that we can provide consistent and significant improvements over JPEG, reducing the bit rate by more than 20% for many PSNR levels. These improvements require consideration of the differences between residual energy and prediction/residual compressibility when selecting a texture prediction, as well as careful control of the computational complexity in encoding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信