平面双周期介质结构中导模共振的理论研究

N. Sydorchuk
{"title":"平面双周期介质结构中导模共振的理论研究","authors":"N. Sydorchuk","doi":"10.1109/MMET.2008.4581056","DOIUrl":null,"url":null,"abstract":"In this paper the scattering characteristics are calculated with the technique based on the volume integral equations for polarization currents. Full-wave analysis is performed. A silicon-on-sapphire periodic structure is used to study the guided-mode resonances in plane-wave excitation conditions. Numerical computations for the reflection spectral resonances are presented for both weak and strong layer modulations. Spectral stability of resonances as a function of angle of incidence is investigated.","PeriodicalId":141554,"journal":{"name":"2008 12th International Conference on Mathematical Methods in Electromagnetic Theory","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Theoretical study of guided-mode resonances in planar doubly-periodic dielectric structures\",\"authors\":\"N. Sydorchuk\",\"doi\":\"10.1109/MMET.2008.4581056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the scattering characteristics are calculated with the technique based on the volume integral equations for polarization currents. Full-wave analysis is performed. A silicon-on-sapphire periodic structure is used to study the guided-mode resonances in plane-wave excitation conditions. Numerical computations for the reflection spectral resonances are presented for both weak and strong layer modulations. Spectral stability of resonances as a function of angle of incidence is investigated.\",\"PeriodicalId\":141554,\"journal\":{\"name\":\"2008 12th International Conference on Mathematical Methods in Electromagnetic Theory\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 12th International Conference on Mathematical Methods in Electromagnetic Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2008.4581056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 12th International Conference on Mathematical Methods in Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2008.4581056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用基于极化电流体积积分方程的方法计算了极化电流的散射特性。进行全波分析。利用蓝宝石上硅的周期结构研究了平面波激励条件下的导模共振。给出了弱层调制和强层调制下反射光谱共振的数值计算。研究了共振谱稳定性随入射角的变化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical study of guided-mode resonances in planar doubly-periodic dielectric structures
In this paper the scattering characteristics are calculated with the technique based on the volume integral equations for polarization currents. Full-wave analysis is performed. A silicon-on-sapphire periodic structure is used to study the guided-mode resonances in plane-wave excitation conditions. Numerical computations for the reflection spectral resonances are presented for both weak and strong layer modulations. Spectral stability of resonances as a function of angle of incidence is investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信