{"title":"通用稀疏线性求解器的片上异构实现","authors":"Arash Sadrieh, Stefano Charissis, A. Hill","doi":"10.1109/IPDPSW.2013.51","DOIUrl":null,"url":null,"abstract":"Inter-device communication is a common limitation of GPGPU computing methods. The on-chip heterogeneous architecture of a recent class of accelerated processing units (APUs), that combine programmable CPU and GPU cores on the same die, presents an opportunity to address this problem. Here we describe an APU-based heterogeneous implementation of the Jacobi-preconditioned conjugate gradient method and identify a set of optimal configurations based on examination of standard matrices. By leveraging the low-latency memory transactions of the APU and exploiting CPU/GPU cohabitation for concurrent vector operations, a comparable performance to that of a high-end GPU running CUSP is achieved. Our results show that use of on-chip heterogeneous architectures can be attractively cost-effective and even show better performance for applications with a low number of linear solver iterations and when device-to-device data transfer is significant. Accordingly, the APU architecture and associated GPAPU methods have significant potential as a low cost, energy efficient alternative for parallel HPC architectures.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An On-chip Heterogeneous Implementation of a General Sparse Linear Solver\",\"authors\":\"Arash Sadrieh, Stefano Charissis, A. Hill\",\"doi\":\"10.1109/IPDPSW.2013.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-device communication is a common limitation of GPGPU computing methods. The on-chip heterogeneous architecture of a recent class of accelerated processing units (APUs), that combine programmable CPU and GPU cores on the same die, presents an opportunity to address this problem. Here we describe an APU-based heterogeneous implementation of the Jacobi-preconditioned conjugate gradient method and identify a set of optimal configurations based on examination of standard matrices. By leveraging the low-latency memory transactions of the APU and exploiting CPU/GPU cohabitation for concurrent vector operations, a comparable performance to that of a high-end GPU running CUSP is achieved. Our results show that use of on-chip heterogeneous architectures can be attractively cost-effective and even show better performance for applications with a low number of linear solver iterations and when device-to-device data transfer is significant. Accordingly, the APU architecture and associated GPAPU methods have significant potential as a low cost, energy efficient alternative for parallel HPC architectures.\",\"PeriodicalId\":234552,\"journal\":{\"name\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2013.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An On-chip Heterogeneous Implementation of a General Sparse Linear Solver
Inter-device communication is a common limitation of GPGPU computing methods. The on-chip heterogeneous architecture of a recent class of accelerated processing units (APUs), that combine programmable CPU and GPU cores on the same die, presents an opportunity to address this problem. Here we describe an APU-based heterogeneous implementation of the Jacobi-preconditioned conjugate gradient method and identify a set of optimal configurations based on examination of standard matrices. By leveraging the low-latency memory transactions of the APU and exploiting CPU/GPU cohabitation for concurrent vector operations, a comparable performance to that of a high-end GPU running CUSP is achieved. Our results show that use of on-chip heterogeneous architectures can be attractively cost-effective and even show better performance for applications with a low number of linear solver iterations and when device-to-device data transfer is significant. Accordingly, the APU architecture and associated GPAPU methods have significant potential as a low cost, energy efficient alternative for parallel HPC architectures.