学习情感分析的映射规则

Web-KR '14 Pub Date : 2014-11-03 DOI:10.1145/2663792.2663796
Saravadee Sae Tan, Lay-Ki Soon, T. Lim, E. Tang, C. Loo
{"title":"学习情感分析的映射规则","authors":"Saravadee Sae Tan, Lay-Ki Soon, T. Lim, E. Tang, C. Loo","doi":"10.1145/2663792.2663796","DOIUrl":null,"url":null,"abstract":"There is an increasing popularity of people posting their feelings on microblogging such as Twitter. Sentiment analysis on the tweets allows organizations to monitor public' feelings towards a product or brand. In this paper, we model sentiment analysis problem as a multi-classification approach that utilizes various feature types, including predicate-argument relation, hashtag, mention and emotion in the tweets. We describe a Content-Structure Correspondence (CSC) model that is able to represent diverse feature types in a tweet. We present a conceptual hierarchy to express the characteristics of a tweet. A multi-classification approach is used to map tweet content to the conceptual hierarchy. The mapping patterns are learned to identify the sentiment of a tweet.","PeriodicalId":289794,"journal":{"name":"Web-KR '14","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning the Mapping Rules for Sentiment Analysis\",\"authors\":\"Saravadee Sae Tan, Lay-Ki Soon, T. Lim, E. Tang, C. Loo\",\"doi\":\"10.1145/2663792.2663796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing popularity of people posting their feelings on microblogging such as Twitter. Sentiment analysis on the tweets allows organizations to monitor public' feelings towards a product or brand. In this paper, we model sentiment analysis problem as a multi-classification approach that utilizes various feature types, including predicate-argument relation, hashtag, mention and emotion in the tweets. We describe a Content-Structure Correspondence (CSC) model that is able to represent diverse feature types in a tweet. We present a conceptual hierarchy to express the characteristics of a tweet. A multi-classification approach is used to map tweet content to the conceptual hierarchy. The mapping patterns are learned to identify the sentiment of a tweet.\",\"PeriodicalId\":289794,\"journal\":{\"name\":\"Web-KR '14\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web-KR '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663792.2663796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web-KR '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663792.2663796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

越来越多的人在微博(如Twitter)上发表自己的感受。对推文的情绪分析使组织能够监控公众对产品或品牌的感受。在本文中,我们将情感分析问题建模为一种多分类方法,该方法利用了各种特征类型,包括推文中的谓词-参数关系、话题标签、提及和情感。我们描述了一个能够表示tweet中不同特征类型的内容结构对应(CSC)模型。我们提出了一个概念层次来表达推文的特征。使用多分类方法将tweet内容映射到概念层次结构。学习映射模式来识别tweet的情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning the Mapping Rules for Sentiment Analysis
There is an increasing popularity of people posting their feelings on microblogging such as Twitter. Sentiment analysis on the tweets allows organizations to monitor public' feelings towards a product or brand. In this paper, we model sentiment analysis problem as a multi-classification approach that utilizes various feature types, including predicate-argument relation, hashtag, mention and emotion in the tweets. We describe a Content-Structure Correspondence (CSC) model that is able to represent diverse feature types in a tweet. We present a conceptual hierarchy to express the characteristics of a tweet. A multi-classification approach is used to map tweet content to the conceptual hierarchy. The mapping patterns are learned to identify the sentiment of a tweet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信