Saravadee Sae Tan, Lay-Ki Soon, T. Lim, E. Tang, C. Loo
{"title":"学习情感分析的映射规则","authors":"Saravadee Sae Tan, Lay-Ki Soon, T. Lim, E. Tang, C. Loo","doi":"10.1145/2663792.2663796","DOIUrl":null,"url":null,"abstract":"There is an increasing popularity of people posting their feelings on microblogging such as Twitter. Sentiment analysis on the tweets allows organizations to monitor public' feelings towards a product or brand. In this paper, we model sentiment analysis problem as a multi-classification approach that utilizes various feature types, including predicate-argument relation, hashtag, mention and emotion in the tweets. We describe a Content-Structure Correspondence (CSC) model that is able to represent diverse feature types in a tweet. We present a conceptual hierarchy to express the characteristics of a tweet. A multi-classification approach is used to map tweet content to the conceptual hierarchy. The mapping patterns are learned to identify the sentiment of a tweet.","PeriodicalId":289794,"journal":{"name":"Web-KR '14","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning the Mapping Rules for Sentiment Analysis\",\"authors\":\"Saravadee Sae Tan, Lay-Ki Soon, T. Lim, E. Tang, C. Loo\",\"doi\":\"10.1145/2663792.2663796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing popularity of people posting their feelings on microblogging such as Twitter. Sentiment analysis on the tweets allows organizations to monitor public' feelings towards a product or brand. In this paper, we model sentiment analysis problem as a multi-classification approach that utilizes various feature types, including predicate-argument relation, hashtag, mention and emotion in the tweets. We describe a Content-Structure Correspondence (CSC) model that is able to represent diverse feature types in a tweet. We present a conceptual hierarchy to express the characteristics of a tweet. A multi-classification approach is used to map tweet content to the conceptual hierarchy. The mapping patterns are learned to identify the sentiment of a tweet.\",\"PeriodicalId\":289794,\"journal\":{\"name\":\"Web-KR '14\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web-KR '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663792.2663796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web-KR '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663792.2663796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
There is an increasing popularity of people posting their feelings on microblogging such as Twitter. Sentiment analysis on the tweets allows organizations to monitor public' feelings towards a product or brand. In this paper, we model sentiment analysis problem as a multi-classification approach that utilizes various feature types, including predicate-argument relation, hashtag, mention and emotion in the tweets. We describe a Content-Structure Correspondence (CSC) model that is able to represent diverse feature types in a tweet. We present a conceptual hierarchy to express the characteristics of a tweet. A multi-classification approach is used to map tweet content to the conceptual hierarchy. The mapping patterns are learned to identify the sentiment of a tweet.