一种新的传感器自定位方法

Doğan Yildiz, S. Karagol, O. Ozgonenel, Satish Tadiparthi, M. Bikdash
{"title":"一种新的传感器自定位方法","authors":"Doğan Yildiz, S. Karagol, O. Ozgonenel, Satish Tadiparthi, M. Bikdash","doi":"10.1109/SSPD.2015.7288499","DOIUrl":null,"url":null,"abstract":"This paper presents a modification of 3N Time of Arrival (TOA) and a reliable Time Difference of Arrival (TDOA) based localization algorithms. TDOA is formulated using the parametric equations of the hyperbolas whose intersections are candidate locations for the nodes to be localized. The TDOA algorithm is guaranteed to find all possible relevant solutions, even when implemented on a computational node with limited capability. Monte- Carlo simulations were used to assess the performance for both algorithms.","PeriodicalId":212668,"journal":{"name":"2015 Sensor Signal Processing for Defence (SSPD)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Novel Self Localization Approach for Sensors\",\"authors\":\"Doğan Yildiz, S. Karagol, O. Ozgonenel, Satish Tadiparthi, M. Bikdash\",\"doi\":\"10.1109/SSPD.2015.7288499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a modification of 3N Time of Arrival (TOA) and a reliable Time Difference of Arrival (TDOA) based localization algorithms. TDOA is formulated using the parametric equations of the hyperbolas whose intersections are candidate locations for the nodes to be localized. The TDOA algorithm is guaranteed to find all possible relevant solutions, even when implemented on a computational node with limited capability. Monte- Carlo simulations were used to assess the performance for both algorithms.\",\"PeriodicalId\":212668,\"journal\":{\"name\":\"2015 Sensor Signal Processing for Defence (SSPD)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sensor Signal Processing for Defence (SSPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPD.2015.7288499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPD.2015.7288499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种改进的3N到达时间(TOA)和一种可靠的基于到达时间差(TDOA)的定位算法。TDOA是用双曲线的参数方程来表示的,双曲线的交点是待定域节点的候选位置。即使在计算能力有限的节点上实现,TDOA算法也能保证找到所有可能的相关解。用蒙特卡罗模拟来评估这两种算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Self Localization Approach for Sensors
This paper presents a modification of 3N Time of Arrival (TOA) and a reliable Time Difference of Arrival (TDOA) based localization algorithms. TDOA is formulated using the parametric equations of the hyperbolas whose intersections are candidate locations for the nodes to be localized. The TDOA algorithm is guaranteed to find all possible relevant solutions, even when implemented on a computational node with limited capability. Monte- Carlo simulations were used to assess the performance for both algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信