基于逐帧cnn的光场相机阵列视图合成

I. Schiopu, Patrice Rondao-Alface, A. Munteanu
{"title":"基于逐帧cnn的光场相机阵列视图合成","authors":"I. Schiopu, Patrice Rondao-Alface, A. Munteanu","doi":"10.1109/IC3D48390.2019.8975901","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel frame-wise view synthesis method based on convolutional neural networks (CNNs) for wide-baseline light field (LF) camera arrays. A novel neural network architecture that follows a multi-resolution processing paradigm is employed to synthesize an entire view. A novel loss function formulation based on the structural similarity index (SSIM) is proposed. A wide-baseline LF image dataset is generated and employed to train the proposed deep model. The proposed method synthesizes each subaperture image (SAI) from a LF image based on corresponding SAIs from two reference LF images. Experimental results show that the proposed method yields promising results with an average PSNR and SSIM of 34.71 dB and 0.9673 respectively for wide baselines.","PeriodicalId":344706,"journal":{"name":"2019 International Conference on 3D Immersion (IC3D)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frame-Wise CNN-Based View Synthesis for Light Field Camera Arrays\",\"authors\":\"I. Schiopu, Patrice Rondao-Alface, A. Munteanu\",\"doi\":\"10.1109/IC3D48390.2019.8975901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a novel frame-wise view synthesis method based on convolutional neural networks (CNNs) for wide-baseline light field (LF) camera arrays. A novel neural network architecture that follows a multi-resolution processing paradigm is employed to synthesize an entire view. A novel loss function formulation based on the structural similarity index (SSIM) is proposed. A wide-baseline LF image dataset is generated and employed to train the proposed deep model. The proposed method synthesizes each subaperture image (SAI) from a LF image based on corresponding SAIs from two reference LF images. Experimental results show that the proposed method yields promising results with an average PSNR and SSIM of 34.71 dB and 0.9673 respectively for wide baselines.\",\"PeriodicalId\":344706,\"journal\":{\"name\":\"2019 International Conference on 3D Immersion (IC3D)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on 3D Immersion (IC3D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3D48390.2019.8975901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on 3D Immersion (IC3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3D48390.2019.8975901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对宽基线光场相机阵列,提出了一种基于卷积神经网络(cnn)的逐帧视图合成方法。采用一种新颖的神经网络架构,遵循多分辨率处理范式来合成整个视图。提出了一种基于结构相似指数(SSIM)的损失函数公式。生成宽基线LF图像数据集,并用于训练所提出的深度模型。该方法基于两幅参考LF图像对应的sar,从LF图像合成每个子孔径图像(SAI)。实验结果表明,该方法在宽基线下的平均PSNR和SSIM分别为34.71 dB和0.9673,取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frame-Wise CNN-Based View Synthesis for Light Field Camera Arrays
The paper proposes a novel frame-wise view synthesis method based on convolutional neural networks (CNNs) for wide-baseline light field (LF) camera arrays. A novel neural network architecture that follows a multi-resolution processing paradigm is employed to synthesize an entire view. A novel loss function formulation based on the structural similarity index (SSIM) is proposed. A wide-baseline LF image dataset is generated and employed to train the proposed deep model. The proposed method synthesizes each subaperture image (SAI) from a LF image based on corresponding SAIs from two reference LF images. Experimental results show that the proposed method yields promising results with an average PSNR and SSIM of 34.71 dB and 0.9673 respectively for wide baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信