{"title":"论风筝图的超边魔法缺陷","authors":"A. Ahmad, M. K. Siddiqui, M. Nadeem, M. Imran","doi":"10.12732/ijam.v32i6.6","DOIUrl":null,"url":null,"abstract":"Abstract: An edge magic labeling of a graph G is a bijection λ : V (G) ∪ E(G) → {1, 2, . . . , |V (G)|+|E(G)|} such that λ(u)+λ(uv)+λ(v) is constant, for every edge uv ∈ E(G). The concept of edge magic deficiency was introduce by Kotzig and Rosas. Motivated by this concept Figueroa-Centeno, Ichishima and Muntaner-Batle defined a similar concept for super edge magic total labelings. The super edge magic deficiency of a graph G, which is denoted by μs(G), is the minimum nonnegative integer n such that G∪nK1, has a super edge magic total labeling or it is equal to +∞ if there exists no such n. In this paper, we study the super edge magic deficiency of kite graphs.","PeriodicalId":378960,"journal":{"name":"Ars Comb.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On super edge magic deficiency of kite graphs\",\"authors\":\"A. Ahmad, M. K. Siddiqui, M. Nadeem, M. Imran\",\"doi\":\"10.12732/ijam.v32i6.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: An edge magic labeling of a graph G is a bijection λ : V (G) ∪ E(G) → {1, 2, . . . , |V (G)|+|E(G)|} such that λ(u)+λ(uv)+λ(v) is constant, for every edge uv ∈ E(G). The concept of edge magic deficiency was introduce by Kotzig and Rosas. Motivated by this concept Figueroa-Centeno, Ichishima and Muntaner-Batle defined a similar concept for super edge magic total labelings. The super edge magic deficiency of a graph G, which is denoted by μs(G), is the minimum nonnegative integer n such that G∪nK1, has a super edge magic total labeling or it is equal to +∞ if there exists no such n. In this paper, we study the super edge magic deficiency of kite graphs.\",\"PeriodicalId\":378960,\"journal\":{\"name\":\"Ars Comb.\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Comb.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/ijam.v32i6.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Comb.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/ijam.v32i6.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
摘要:图G的边幻标记是一个双射λ: V (G)∪E(G)→{1,2,…V (G) | | + | E (G) |}这样λ(u) +λ(紫外线)+λ(V)是常数,每边uv∈E (G)。边缘幻缺的概念是由Kotzig和Rosas提出的。受这个概念的启发,Figueroa-Centeno、Ichishima和muntaner - battle为超级边缘魔法总标签定义了一个类似的概念。图G的超边幻缺量,用μs(G)表示,是使G∪nK1有一个超边幻全标记,或者在不存在的情况下等于+∞的最小非负整数n。本文研究风筝图的超边幻缺量。
Abstract: An edge magic labeling of a graph G is a bijection λ : V (G) ∪ E(G) → {1, 2, . . . , |V (G)|+|E(G)|} such that λ(u)+λ(uv)+λ(v) is constant, for every edge uv ∈ E(G). The concept of edge magic deficiency was introduce by Kotzig and Rosas. Motivated by this concept Figueroa-Centeno, Ichishima and Muntaner-Batle defined a similar concept for super edge magic total labelings. The super edge magic deficiency of a graph G, which is denoted by μs(G), is the minimum nonnegative integer n such that G∪nK1, has a super edge magic total labeling or it is equal to +∞ if there exists no such n. In this paper, we study the super edge magic deficiency of kite graphs.