利用e型GaN开关的高功率密度、高效率、宽输入电压范围LLC谐振变换器

A. Amirahmadi, M. Domb, E. Persson
{"title":"利用e型GaN开关的高功率密度、高效率、宽输入电压范围LLC谐振变换器","authors":"A. Amirahmadi, M. Domb, E. Persson","doi":"10.1109/APEC.2017.7930716","DOIUrl":null,"url":null,"abstract":"The LLC resonant power supply topology shows great promise for meeting the demands of increased power density while maintaining high efficiency. But there is a tradeoff between maximizing efficiency and accommodating regulation over a wide input voltage range. The most efficient designs have narrow input voltage range, therefore requiring a large DC bus capacitor to support the required holdup time, thus impeding the goal of improved density. This paper presents a design approach which enables optimization of a modified LLC resonant converter for highest efficiency, while simultaneously extending the input regulation range from 340V-400V to 280V-400V by adding a small capacitor in series with the magnetizing inductance. This so-called ‘LCLC’ topology can then use a 2X smaller DC bus cap and still maintain the same holdup time. The primary side is driven with a full bridge to reduce ripple-current on the smaller DC bus cap. A 3 kW high-frequency, high-density example is shown using a GaN full-bridge on the input side to achieve 98.4% peak efficiency while operating at 350 kHz. Experimental results compare the LCLC to a conventional LLC under identical conditions and demonstrate the wide operating range and high-density while maintaining the same high efficiency over the normal operating range.","PeriodicalId":201289,"journal":{"name":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"High power density high efficiency wide input voltage range LLC resonant converter utilizing E-mode GaN switches\",\"authors\":\"A. Amirahmadi, M. Domb, E. Persson\",\"doi\":\"10.1109/APEC.2017.7930716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The LLC resonant power supply topology shows great promise for meeting the demands of increased power density while maintaining high efficiency. But there is a tradeoff between maximizing efficiency and accommodating regulation over a wide input voltage range. The most efficient designs have narrow input voltage range, therefore requiring a large DC bus capacitor to support the required holdup time, thus impeding the goal of improved density. This paper presents a design approach which enables optimization of a modified LLC resonant converter for highest efficiency, while simultaneously extending the input regulation range from 340V-400V to 280V-400V by adding a small capacitor in series with the magnetizing inductance. This so-called ‘LCLC’ topology can then use a 2X smaller DC bus cap and still maintain the same holdup time. The primary side is driven with a full bridge to reduce ripple-current on the smaller DC bus cap. A 3 kW high-frequency, high-density example is shown using a GaN full-bridge on the input side to achieve 98.4% peak efficiency while operating at 350 kHz. Experimental results compare the LCLC to a conventional LLC under identical conditions and demonstrate the wide operating range and high-density while maintaining the same high efficiency over the normal operating range.\",\"PeriodicalId\":201289,\"journal\":{\"name\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2017.7930716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2017.7930716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

LLC谐振电源拓扑在满足功率密度增加的同时保持高效率的需求方面显示出很大的希望。但是,在最大限度地提高效率和适应宽输入电压范围内的调节之间存在权衡。最有效的设计具有狭窄的输入电压范围,因此需要一个大的直流母线电容器来支持所需的保持时间,从而阻碍了提高密度的目标。本文提出了一种改进的LLC谐振变换器的优化设计方法,通过增加一个小电容与磁化电感串联,将输入稳压范围从340V-400V扩展到280V-400V,以获得最高的效率。这种所谓的“LCLC”拓扑结构可以使用小2倍的直流母线帽,并保持相同的保持时间。初级侧采用全桥驱动,以减少较小的直流母线帽上的纹波电流。图中显示了一个3kw高频高密度示例,在输入侧使用GaN全桥,在350khz工作时实现了98.4%的峰值效率。实验结果表明,在相同的工作条件下,LCLC与传统LLC相比具有宽工作范围和高密度,同时在正常工作范围内保持相同的高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High power density high efficiency wide input voltage range LLC resonant converter utilizing E-mode GaN switches
The LLC resonant power supply topology shows great promise for meeting the demands of increased power density while maintaining high efficiency. But there is a tradeoff between maximizing efficiency and accommodating regulation over a wide input voltage range. The most efficient designs have narrow input voltage range, therefore requiring a large DC bus capacitor to support the required holdup time, thus impeding the goal of improved density. This paper presents a design approach which enables optimization of a modified LLC resonant converter for highest efficiency, while simultaneously extending the input regulation range from 340V-400V to 280V-400V by adding a small capacitor in series with the magnetizing inductance. This so-called ‘LCLC’ topology can then use a 2X smaller DC bus cap and still maintain the same holdup time. The primary side is driven with a full bridge to reduce ripple-current on the smaller DC bus cap. A 3 kW high-frequency, high-density example is shown using a GaN full-bridge on the input side to achieve 98.4% peak efficiency while operating at 350 kHz. Experimental results compare the LCLC to a conventional LLC under identical conditions and demonstrate the wide operating range and high-density while maintaining the same high efficiency over the normal operating range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信