软化结构钟形比例阻尼模型的数值评价

C. Lee, T. Chang
{"title":"软化结构钟形比例阻尼模型的数值评价","authors":"C. Lee, T. Chang","doi":"10.23967/wccm-apcom.2022.083","DOIUrl":null,"url":null,"abstract":". A new type of proportional damping models, called bell-shaped proportional damping model, has recently been proposed. This new model has not only addressed the spurious damping forces, but also maintained the same order of computational efficiency as the Rayleigh model. This model has also been further improved such that, by using the tangent stiffness approach, it becomes suitable for structures experiencing softening response with negative stiffness. The improved model allows users to have flexible control of modal damping ratio for all interested frequency intervals, including those associated with negative stiffness. In this study, the performance of bell-shaped damping model is evaluated numerically in a response history analysis of a multi-storey building under seismic loading. The results show that, compared to the Rayleigh model, the bell-shaped model performs excellently in terms of always giving desirable positive energy dissipation even when the structure is experiencing softening response.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Evaluation of Bell-Shaped Proportional Damping Model for Softening Structures\",\"authors\":\"C. Lee, T. Chang\",\"doi\":\"10.23967/wccm-apcom.2022.083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A new type of proportional damping models, called bell-shaped proportional damping model, has recently been proposed. This new model has not only addressed the spurious damping forces, but also maintained the same order of computational efficiency as the Rayleigh model. This model has also been further improved such that, by using the tangent stiffness approach, it becomes suitable for structures experiencing softening response with negative stiffness. The improved model allows users to have flexible control of modal damping ratio for all interested frequency intervals, including those associated with negative stiffness. In this study, the performance of bell-shaped damping model is evaluated numerically in a response history analysis of a multi-storey building under seismic loading. The results show that, compared to the Rayleigh model, the bell-shaped model performs excellently in terms of always giving desirable positive energy dissipation even when the structure is experiencing softening response.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 最近提出了一种新的比例阻尼模型,称为钟形比例阻尼模型。该模型不仅解决了伪阻尼力的问题,而且保持了与瑞利模型相同数量级的计算效率。该模型也得到了进一步的改进,通过使用切线刚度方法,它变得适用于经历负刚度软化响应的结构。改进后的模型允许用户灵活控制所有感兴趣的频率区间的模态阻尼比,包括与负刚度相关的频率区间。本文对多层建筑在地震荷载作用下的响应历史分析进行了钟形阻尼模型的数值评价。结果表明,与瑞利模型相比,钟形模型即使在结构发生软化响应时也能提供理想的正能量耗散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Evaluation of Bell-Shaped Proportional Damping Model for Softening Structures
. A new type of proportional damping models, called bell-shaped proportional damping model, has recently been proposed. This new model has not only addressed the spurious damping forces, but also maintained the same order of computational efficiency as the Rayleigh model. This model has also been further improved such that, by using the tangent stiffness approach, it becomes suitable for structures experiencing softening response with negative stiffness. The improved model allows users to have flexible control of modal damping ratio for all interested frequency intervals, including those associated with negative stiffness. In this study, the performance of bell-shaped damping model is evaluated numerically in a response history analysis of a multi-storey building under seismic loading. The results show that, compared to the Rayleigh model, the bell-shaped model performs excellently in terms of always giving desirable positive energy dissipation even when the structure is experiencing softening response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信