{"title":"用于压力容器的定向能量沉积蒙乃尔K-500增材制造","authors":"Ze Chen, Chengcheng Wang, S. Kandukuri, Kun Zhou","doi":"10.1115/pvp2022-85735","DOIUrl":null,"url":null,"abstract":"\n Metal additive manufacturing has rapidly revolutionized the production processes across various industries. Laser-assisted powder-fed directed energy deposition (DED) has eminent advantages such as high deposition rate, capability for cladding and repairing valuable parts, and great potential for in-situ alloying, which are highly desirable attributes for pressure vessel applications. This study used DED to process Monel K-500, a nickel-based alloy approved by the American Society Of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Fully dense Monel K-500 parts were printed by DED with the tensile strength of ∼ 20% and elongation of ∼ 120% higher than their casted counterparts. Besides, the anisotropy of mechanical properties of DED fabricated Monel K-500 parts were investigated. This work provides a technical reference for industries to utilize DED to manufacture Monel K-500 parts with desirable performance for pressure vessel applications.","PeriodicalId":434925,"journal":{"name":"Volume 4A: Materials and Fabrication","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Manufacturing of Monel K-500 via Directed Energy Deposition for Pressure Vessel Applications\",\"authors\":\"Ze Chen, Chengcheng Wang, S. Kandukuri, Kun Zhou\",\"doi\":\"10.1115/pvp2022-85735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Metal additive manufacturing has rapidly revolutionized the production processes across various industries. Laser-assisted powder-fed directed energy deposition (DED) has eminent advantages such as high deposition rate, capability for cladding and repairing valuable parts, and great potential for in-situ alloying, which are highly desirable attributes for pressure vessel applications. This study used DED to process Monel K-500, a nickel-based alloy approved by the American Society Of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Fully dense Monel K-500 parts were printed by DED with the tensile strength of ∼ 20% and elongation of ∼ 120% higher than their casted counterparts. Besides, the anisotropy of mechanical properties of DED fabricated Monel K-500 parts were investigated. This work provides a technical reference for industries to utilize DED to manufacture Monel K-500 parts with desirable performance for pressure vessel applications.\",\"PeriodicalId\":434925,\"journal\":{\"name\":\"Volume 4A: Materials and Fabrication\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4A: Materials and Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2022-85735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4A: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2022-85735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Additive Manufacturing of Monel K-500 via Directed Energy Deposition for Pressure Vessel Applications
Metal additive manufacturing has rapidly revolutionized the production processes across various industries. Laser-assisted powder-fed directed energy deposition (DED) has eminent advantages such as high deposition rate, capability for cladding and repairing valuable parts, and great potential for in-situ alloying, which are highly desirable attributes for pressure vessel applications. This study used DED to process Monel K-500, a nickel-based alloy approved by the American Society Of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Fully dense Monel K-500 parts were printed by DED with the tensile strength of ∼ 20% and elongation of ∼ 120% higher than their casted counterparts. Besides, the anisotropy of mechanical properties of DED fabricated Monel K-500 parts were investigated. This work provides a technical reference for industries to utilize DED to manufacture Monel K-500 parts with desirable performance for pressure vessel applications.