流体耦合金属微机械针阵列

J. Brazzle, I. Papautsky, A. B. Frazier
{"title":"流体耦合金属微机械针阵列","authors":"J. Brazzle, I. Papautsky, A. B. Frazier","doi":"10.1109/IEMBS.1998.746949","DOIUrl":null,"url":null,"abstract":"Fluid coupled metallic micromachined needle arrays are designed, fabricated, and characterized. The described hollow metallic needle arrays include design features such as dual structural supports and needle coupling channels. The supports and needle walls are formed by micro-electroformed metal to provide increased structural integrity. The needle coupling channels are used to fluidically interconnect the needles and allow pressure equalization and balance of fluid flow between needles. In addition, the needle coupling channels minimize the effects of restricted needle passages by providing a redistribution point for fluid flow between them. The optimum design for the needle coupling channels is investigated using an ANSYS finite element numerical model. The significance of this work includes the development of hollow, metallic micromachined needle arrays for biomedical applications. The authors also discuss structural, fluidic, and biological design considerations.","PeriodicalId":156581,"journal":{"name":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fluid coupled metallic micromachined needle arrays\",\"authors\":\"J. Brazzle, I. Papautsky, A. B. Frazier\",\"doi\":\"10.1109/IEMBS.1998.746949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluid coupled metallic micromachined needle arrays are designed, fabricated, and characterized. The described hollow metallic needle arrays include design features such as dual structural supports and needle coupling channels. The supports and needle walls are formed by micro-electroformed metal to provide increased structural integrity. The needle coupling channels are used to fluidically interconnect the needles and allow pressure equalization and balance of fluid flow between needles. In addition, the needle coupling channels minimize the effects of restricted needle passages by providing a redistribution point for fluid flow between them. The optimum design for the needle coupling channels is investigated using an ANSYS finite element numerical model. The significance of this work includes the development of hollow, metallic micromachined needle arrays for biomedical applications. The authors also discuss structural, fluidic, and biological design considerations.\",\"PeriodicalId\":156581,\"journal\":{\"name\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1998.746949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1998.746949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

流体耦合金属微机械针阵列的设计,制造和表征。所描述的空心金属针阵列包括双结构支撑和针耦合通道等设计特征。支架和针壁由微电铸金属形成,以提供更高的结构完整性。针耦合通道用于将针流体互连,并允许针之间的压力均衡和流体流动平衡。此外,针耦合通道通过为针通道之间的流体流动提供再分配点,最大限度地减少了受限针通道的影响。采用ANSYS有限元数值模型对针形耦合通道的优化设计进行了研究。这项工作的意义包括开发用于生物医学应用的空心金属微机械针阵列。作者还讨论了结构、流体和生物设计方面的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluid coupled metallic micromachined needle arrays
Fluid coupled metallic micromachined needle arrays are designed, fabricated, and characterized. The described hollow metallic needle arrays include design features such as dual structural supports and needle coupling channels. The supports and needle walls are formed by micro-electroformed metal to provide increased structural integrity. The needle coupling channels are used to fluidically interconnect the needles and allow pressure equalization and balance of fluid flow between needles. In addition, the needle coupling channels minimize the effects of restricted needle passages by providing a redistribution point for fluid flow between them. The optimum design for the needle coupling channels is investigated using an ANSYS finite element numerical model. The significance of this work includes the development of hollow, metallic micromachined needle arrays for biomedical applications. The authors also discuss structural, fluidic, and biological design considerations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信