{"title":"流体耦合金属微机械针阵列","authors":"J. Brazzle, I. Papautsky, A. B. Frazier","doi":"10.1109/IEMBS.1998.746949","DOIUrl":null,"url":null,"abstract":"Fluid coupled metallic micromachined needle arrays are designed, fabricated, and characterized. The described hollow metallic needle arrays include design features such as dual structural supports and needle coupling channels. The supports and needle walls are formed by micro-electroformed metal to provide increased structural integrity. The needle coupling channels are used to fluidically interconnect the needles and allow pressure equalization and balance of fluid flow between needles. In addition, the needle coupling channels minimize the effects of restricted needle passages by providing a redistribution point for fluid flow between them. The optimum design for the needle coupling channels is investigated using an ANSYS finite element numerical model. The significance of this work includes the development of hollow, metallic micromachined needle arrays for biomedical applications. The authors also discuss structural, fluidic, and biological design considerations.","PeriodicalId":156581,"journal":{"name":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fluid coupled metallic micromachined needle arrays\",\"authors\":\"J. Brazzle, I. Papautsky, A. B. Frazier\",\"doi\":\"10.1109/IEMBS.1998.746949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluid coupled metallic micromachined needle arrays are designed, fabricated, and characterized. The described hollow metallic needle arrays include design features such as dual structural supports and needle coupling channels. The supports and needle walls are formed by micro-electroformed metal to provide increased structural integrity. The needle coupling channels are used to fluidically interconnect the needles and allow pressure equalization and balance of fluid flow between needles. In addition, the needle coupling channels minimize the effects of restricted needle passages by providing a redistribution point for fluid flow between them. The optimum design for the needle coupling channels is investigated using an ANSYS finite element numerical model. The significance of this work includes the development of hollow, metallic micromachined needle arrays for biomedical applications. The authors also discuss structural, fluidic, and biological design considerations.\",\"PeriodicalId\":156581,\"journal\":{\"name\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1998.746949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1998.746949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fluid coupled metallic micromachined needle arrays are designed, fabricated, and characterized. The described hollow metallic needle arrays include design features such as dual structural supports and needle coupling channels. The supports and needle walls are formed by micro-electroformed metal to provide increased structural integrity. The needle coupling channels are used to fluidically interconnect the needles and allow pressure equalization and balance of fluid flow between needles. In addition, the needle coupling channels minimize the effects of restricted needle passages by providing a redistribution point for fluid flow between them. The optimum design for the needle coupling channels is investigated using an ANSYS finite element numerical model. The significance of this work includes the development of hollow, metallic micromachined needle arrays for biomedical applications. The authors also discuss structural, fluidic, and biological design considerations.