具有状态延迟的随机奇异系统的耗散控制

Qin Li, Qinglin Meng, Xianjie Wang
{"title":"具有状态延迟的随机奇异系统的耗散控制","authors":"Qin Li, Qinglin Meng, Xianjie Wang","doi":"10.2478/ACSC-2013-0017","DOIUrl":null,"url":null,"abstract":"In this paper, the dissipative control problem for a class of stochastic singular system with state delay is considered. Based on the singular stochastic Lyapunov method, a sufficient condition is firstly derived for the system to be mean-square asymptotically stable and strictly dissipative using linear matrix inequality. Then the state feedback controller is designed such that the closed-loop system to be mean-square asymptotically stable and strictly dissipative. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.","PeriodicalId":248542,"journal":{"name":"Proceedings of the 30th Chinese Control Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dissipative control for stochastic singular systems with state delay\",\"authors\":\"Qin Li, Qinglin Meng, Xianjie Wang\",\"doi\":\"10.2478/ACSC-2013-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the dissipative control problem for a class of stochastic singular system with state delay is considered. Based on the singular stochastic Lyapunov method, a sufficient condition is firstly derived for the system to be mean-square asymptotically stable and strictly dissipative using linear matrix inequality. Then the state feedback controller is designed such that the closed-loop system to be mean-square asymptotically stable and strictly dissipative. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":248542,\"journal\":{\"name\":\"Proceedings of the 30th Chinese Control Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th Chinese Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ACSC-2013-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th Chinese Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ACSC-2013-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了一类具有状态延迟的随机奇异系统的耗散控制问题。基于奇异随机Lyapunov方法,利用线性矩阵不等式,首先导出了系统均方渐近稳定且严格耗散的充分条件。然后设计状态反馈控制器,使闭环系统均方渐近稳定且严格耗散。最后,通过数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative control for stochastic singular systems with state delay
In this paper, the dissipative control problem for a class of stochastic singular system with state delay is considered. Based on the singular stochastic Lyapunov method, a sufficient condition is firstly derived for the system to be mean-square asymptotically stable and strictly dissipative using linear matrix inequality. Then the state feedback controller is designed such that the closed-loop system to be mean-square asymptotically stable and strictly dissipative. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信