横向植物识别的非二次递归算法

A. Figueiras-Vidal, J. M. Páez-Borrallo, Francisco Lorenz Speranzini
{"title":"横向植物识别的非二次递归算法","authors":"A. Figueiras-Vidal, J. M. Páez-Borrallo, Francisco Lorenz Speranzini","doi":"10.1109/ICASSP.1988.196858","DOIUrl":null,"url":null,"abstract":"A generalization of the RLS algorithm is presented. The objective measure to be minimized is composed of the sum of arbitrarily weighted kth powers of the observed error (RLK algorithm). The authors formulate general recursive algorithm in the context of noisy transversal plant identification. An approximate analysis of its performance based on the convergence of the mean and covariance matrix of the adaptive filter coefficients is carried out. This analysis evidences the importance of the choice of the order k under the knowledge of the plant noise statistics. The coherence of some computer simulation results for two different algorithms (k=2, 4) and plant noise statistics (binary and Laplacian) with the theoretical analysis is shown.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-quadratic recursive algorithms (RLK) for transversal plant identification\",\"authors\":\"A. Figueiras-Vidal, J. M. Páez-Borrallo, Francisco Lorenz Speranzini\",\"doi\":\"10.1109/ICASSP.1988.196858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalization of the RLS algorithm is presented. The objective measure to be minimized is composed of the sum of arbitrarily weighted kth powers of the observed error (RLK algorithm). The authors formulate general recursive algorithm in the context of noisy transversal plant identification. An approximate analysis of its performance based on the convergence of the mean and covariance matrix of the adaptive filter coefficients is carried out. This analysis evidences the importance of the choice of the order k under the knowledge of the plant noise statistics. The coherence of some computer simulation results for two different algorithms (k=2, 4) and plant noise statistics (binary and Laplacian) with the theoretical analysis is shown.<<ETX>>\",\"PeriodicalId\":448544,\"journal\":{\"name\":\"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1988.196858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.196858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对RLS算法进行了推广。要最小化的客观度量由观测误差的任意加权k次方的和组成(RLK算法)。在有噪声的横向植物识别中,提出了一般递归算法。基于自适应滤波器系数的均值和协方差矩阵的收敛性对其性能进行了近似分析。这一分析证明了在了解植物噪声统计量的情况下,k阶选择的重要性。给出了两种不同算法(k= 2,4)和植物噪声统计(二值和拉普拉斯)的计算机模拟结果与理论分析的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-quadratic recursive algorithms (RLK) for transversal plant identification
A generalization of the RLS algorithm is presented. The objective measure to be minimized is composed of the sum of arbitrarily weighted kth powers of the observed error (RLK algorithm). The authors formulate general recursive algorithm in the context of noisy transversal plant identification. An approximate analysis of its performance based on the convergence of the mean and covariance matrix of the adaptive filter coefficients is carried out. This analysis evidences the importance of the choice of the order k under the knowledge of the plant noise statistics. The coherence of some computer simulation results for two different algorithms (k=2, 4) and plant noise statistics (binary and Laplacian) with the theoretical analysis is shown.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信