直观适应性异常检测器

Krystyna Kiersztyn
{"title":"直观适应性异常检测器","authors":"Krystyna Kiersztyn","doi":"10.1002/sam.11562","DOIUrl":null,"url":null,"abstract":"Nowadays, we have been dealing with a large amount of data in which anomalies occur naturally for many reasons, both due to hardware and humans. Therefore, it is necessary to develop efficient tools that are easily adaptable to various data. The paper presents an innovative use of classical statistical tools to detect outliers in multidimensional data sets. The proposed approach uses well‐known statistical methods in an innovative way and allows for a high level of efficiency to be achieved using multi‐level aggregation. The effectiveness of the proposed innovative method is demonstrated by a series of numerical experiments.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intuitively adaptable outlier detector\",\"authors\":\"Krystyna Kiersztyn\",\"doi\":\"10.1002/sam.11562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, we have been dealing with a large amount of data in which anomalies occur naturally for many reasons, both due to hardware and humans. Therefore, it is necessary to develop efficient tools that are easily adaptable to various data. The paper presents an innovative use of classical statistical tools to detect outliers in multidimensional data sets. The proposed approach uses well‐known statistical methods in an innovative way and allows for a high level of efficiency to be achieved using multi‐level aggregation. The effectiveness of the proposed innovative method is demonstrated by a series of numerical experiments.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如今,我们一直在处理大量的数据,其中自然发生的异常有很多原因,包括硬件和人为的原因。因此,有必要开发易于适应各种数据的高效工具。本文提出了一种创新的使用经典统计工具来检测多维数据集中的异常值。所提出的方法以一种创新的方式使用了众所周知的统计方法,并允许使用多级聚合实现高水平的效率。通过一系列数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intuitively adaptable outlier detector
Nowadays, we have been dealing with a large amount of data in which anomalies occur naturally for many reasons, both due to hardware and humans. Therefore, it is necessary to develop efficient tools that are easily adaptable to various data. The paper presents an innovative use of classical statistical tools to detect outliers in multidimensional data sets. The proposed approach uses well‐known statistical methods in an innovative way and allows for a high level of efficiency to be achieved using multi‐level aggregation. The effectiveness of the proposed innovative method is demonstrated by a series of numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信