基于时间层次卷积神经网络的时空犯罪预测

Fatih Ilhan, S. Tekin, Bilgin Aksoy
{"title":"基于时间层次卷积神经网络的时空犯罪预测","authors":"Fatih Ilhan, S. Tekin, Bilgin Aksoy","doi":"10.1109/SIU49456.2020.9302169","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new deep learning based model that uses convolutional neural networks for spatiotemporal crime prediction. To learn the temporal pattern of crime events, we employ a temporally hierarchical structure that branches along the temporal dimension. In addition, channel projection is applied to capture the separate influences of crime events over future crime risk. In the results section, our model is compared with classical methods and the performance is analyzed on publicly available Chicago and Los Angeles crime datasets. The proposed model significantly improves the performance compared to the traditional methods.","PeriodicalId":312627,"journal":{"name":"2020 28th Signal Processing and Communications Applications Conference (SIU)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatio-Temporal Crime Prediction with Temporally Hierarchical Convolutional Neural Networks\",\"authors\":\"Fatih Ilhan, S. Tekin, Bilgin Aksoy\",\"doi\":\"10.1109/SIU49456.2020.9302169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new deep learning based model that uses convolutional neural networks for spatiotemporal crime prediction. To learn the temporal pattern of crime events, we employ a temporally hierarchical structure that branches along the temporal dimension. In addition, channel projection is applied to capture the separate influences of crime events over future crime risk. In the results section, our model is compared with classical methods and the performance is analyzed on publicly available Chicago and Los Angeles crime datasets. The proposed model significantly improves the performance compared to the traditional methods.\",\"PeriodicalId\":312627,\"journal\":{\"name\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU49456.2020.9302169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU49456.2020.9302169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种新的基于深度学习的模型,该模型使用卷积神经网络进行时空犯罪预测。为了学习犯罪事件的时间模式,我们采用了沿时间维度分支的时间层次结构。此外,通道投影用于捕捉犯罪事件对未来犯罪风险的单独影响。在结果部分,将我们的模型与经典方法进行比较,并在公开的芝加哥和洛杉矶犯罪数据集上分析其性能。与传统方法相比,该模型显著提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Temporal Crime Prediction with Temporally Hierarchical Convolutional Neural Networks
In this paper, we propose a new deep learning based model that uses convolutional neural networks for spatiotemporal crime prediction. To learn the temporal pattern of crime events, we employ a temporally hierarchical structure that branches along the temporal dimension. In addition, channel projection is applied to capture the separate influences of crime events over future crime risk. In the results section, our model is compared with classical methods and the performance is analyzed on publicly available Chicago and Los Angeles crime datasets. The proposed model significantly improves the performance compared to the traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信