J. Kent, Shambo Bhattacharjee, W. Faber, I. Hussein
{"title":"轨道跟踪问题的统一方法","authors":"J. Kent, Shambo Bhattacharjee, W. Faber, I. Hussein","doi":"10.1109/MFI49285.2020.9235258","DOIUrl":null,"url":null,"abstract":"Consider an object in orbit about the earth for which a sequence of angles-only measurements is made. This paper looks in detail at a one-step update for the filtering problem. Although the problem appears very nonlinear at first sight, it can be almost reduced to the standard linear Kalman filter by a careful formulation. The key features of this formulation are (1) the use of a local or adapted basis rather than a fixed basis for three-dimensional Euclidean space and the use of structural rather than ambient coordinates to represent the state, (2) the development of a novel \"normal:conditional- normal\" distribution to described the propagated position of the state, and (3) the development of a novel \"Observation- Centered\" Kalman filter to update the state distribution.A major advantage of this unified approach is that it gives a closed form filter which is highly accurate under a wide range of conditions, including high initial uncertainty, high eccentricity and long propagation times.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Unified Approach to The Orbital Tracking Problem\",\"authors\":\"J. Kent, Shambo Bhattacharjee, W. Faber, I. Hussein\",\"doi\":\"10.1109/MFI49285.2020.9235258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider an object in orbit about the earth for which a sequence of angles-only measurements is made. This paper looks in detail at a one-step update for the filtering problem. Although the problem appears very nonlinear at first sight, it can be almost reduced to the standard linear Kalman filter by a careful formulation. The key features of this formulation are (1) the use of a local or adapted basis rather than a fixed basis for three-dimensional Euclidean space and the use of structural rather than ambient coordinates to represent the state, (2) the development of a novel \\\"normal:conditional- normal\\\" distribution to described the propagated position of the state, and (3) the development of a novel \\\"Observation- Centered\\\" Kalman filter to update the state distribution.A major advantage of this unified approach is that it gives a closed form filter which is highly accurate under a wide range of conditions, including high initial uncertainty, high eccentricity and long propagation times.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Unified Approach to The Orbital Tracking Problem
Consider an object in orbit about the earth for which a sequence of angles-only measurements is made. This paper looks in detail at a one-step update for the filtering problem. Although the problem appears very nonlinear at first sight, it can be almost reduced to the standard linear Kalman filter by a careful formulation. The key features of this formulation are (1) the use of a local or adapted basis rather than a fixed basis for three-dimensional Euclidean space and the use of structural rather than ambient coordinates to represent the state, (2) the development of a novel "normal:conditional- normal" distribution to described the propagated position of the state, and (3) the development of a novel "Observation- Centered" Kalman filter to update the state distribution.A major advantage of this unified approach is that it gives a closed form filter which is highly accurate under a wide range of conditions, including high initial uncertainty, high eccentricity and long propagation times.