用非单调变差函数的正定函数来定义相关图的空间依赖性

Winsy Weku, H. Pramoedyo, Agus Widodo, Rahma Fitriani
{"title":"用非单调变差函数的正定函数来定义相关图的空间依赖性","authors":"Winsy Weku, H. Pramoedyo, Agus Widodo, Rahma Fitriani","doi":"10.1063/1.5139186","DOIUrl":null,"url":null,"abstract":"The covariance function that forms a variogram is an important measurement for spatial dependence and as a linear kriging interpolation tool. The covariance function requires a definite positive guarantee, this means that not all functions can be used. Therefore, this research explores the correlogram and nonmonoton variogram functions and shows it analytically using the Fourier Transform (Bochner’s theorem). In addition, a simple approach is used to determine definite positivity by paying attention to boundaries. Suppose that C : Rd → R is positive definite if it bounded to exponential which is positive definit. Research shows that Nonmonoton Bessel functions that have Exponential bound are positive definite. Multiplication operations of two covariance functions, C1 and C2 in measured spaces indicate that definite positive properties are fulfilled.","PeriodicalId":209108,"journal":{"name":"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Positive definite functions of non monoton variogram to define the spatial dependency of correlogram\",\"authors\":\"Winsy Weku, H. Pramoedyo, Agus Widodo, Rahma Fitriani\",\"doi\":\"10.1063/1.5139186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The covariance function that forms a variogram is an important measurement for spatial dependence and as a linear kriging interpolation tool. The covariance function requires a definite positive guarantee, this means that not all functions can be used. Therefore, this research explores the correlogram and nonmonoton variogram functions and shows it analytically using the Fourier Transform (Bochner’s theorem). In addition, a simple approach is used to determine definite positivity by paying attention to boundaries. Suppose that C : Rd → R is positive definite if it bounded to exponential which is positive definit. Research shows that Nonmonoton Bessel functions that have Exponential bound are positive definite. Multiplication operations of two covariance functions, C1 and C2 in measured spaces indicate that definite positive properties are fulfilled.\",\"PeriodicalId\":209108,\"journal\":{\"name\":\"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5139186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5139186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

构成变异函数的协方差函数是空间相关性的重要度量,也是线性克里格插值工具。协方差函数需要一个明确的正保证,这意味着不是所有的函数都可以使用。因此,本研究探讨了相关函数和非单调变差函数,并利用傅里叶变换(Bochner定理)对其进行了解析性展示。此外,一个简单的方法是通过注意边界来确定明确的积极性。假设C: Rd→R是正定的如果它有界于指数,它是正定的。研究表明,具有指数界的非单调贝塞尔函数是正定的。对两个协方差函数C1和C2在测量空间中的乘法运算表明,该函数满足定正性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive definite functions of non monoton variogram to define the spatial dependency of correlogram
The covariance function that forms a variogram is an important measurement for spatial dependence and as a linear kriging interpolation tool. The covariance function requires a definite positive guarantee, this means that not all functions can be used. Therefore, this research explores the correlogram and nonmonoton variogram functions and shows it analytically using the Fourier Transform (Bochner’s theorem). In addition, a simple approach is used to determine definite positivity by paying attention to boundaries. Suppose that C : Rd → R is positive definite if it bounded to exponential which is positive definit. Research shows that Nonmonoton Bessel functions that have Exponential bound are positive definite. Multiplication operations of two covariance functions, C1 and C2 in measured spaces indicate that definite positive properties are fulfilled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信